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Abstract

Empirical models of demand for differentiated products rely on low-dimensional
product representations to capture substitution patterns. These representations
are increasingly proxied by applying ML methods to high-dimensional, unstruc-
tured data, including product descriptions and images. When proxies fail to
capture the true dimensions of differentiation that drive substitution, standard
workflows will deliver biased counterfactuals and invalid inference. We de-
velop a practical toolkit that corrects this bias and ensures valid inference for
a broad class of counterfactuals. Our approach applies to market-level and/or
individual data, requires minimal additional computation, is efficient, delivers
simple formulas for standard errors, and accommodates data-dependent prox-
ies, including embeddings from fine-tuned ML models. It can also be used with
standard quantitative attributes when mismeasurement is a concern. In addi-
tion, we propose diagnostics to assess the adequacy of the proxy construction
and dimension. The approach yields meaningful improvements in predicting
counterfactual substitution in both simulations and an empirical application.
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1 Introduction

Many questions in economics and other social sciences require researchers to estimate
demand for differentiated products. A common strategy is to estimate discrete-choice
models which specify the utility of a product as a function of the product’s price and
other observable attributes, often allowing for rich types of consumer heterogeneity
(Berry et al. (1995, 2004), henceforth BLP). Among other applications, this approach
has been used to study the impact of horizontal mergers (Nevo, 2000), new product
launches (Hausman, 1994; Petrin, 2002), trade policy (Goldberg, 1995), school choice
(Bayer et al., 2007; Neilson, 2017), two-sided markets (Fan, 2013; Lee, 2013), and the
evolution of markups over time (Grieco et al., 2024).

The success of demand models in predicting (counterfactual) quantities of interest
(counterfactuals hereafter) hinges on their ability to capture substitution patterns.
Doing so requires using product attributes as model inputs that correctly reflect the
underlying dimensions of differentiation. Choosing the correct attributes to use as
model inputs poses a fundamental measurement challenge (Berry and Haile, 2021).
First, consumer choices are often driven by hard-to-quantify characteristics, such as
visual design, user friendliness, or style. In these cases, a growing literature shows
that product images, descriptions, and reviews contain valuable information to cap-
ture substitution patterns (Compiani et al., 2025; Han and Lee, 2025; Lee, 2025).
Consumer surveys may also provide measures of product differentiation (Magnolfi
et al., 2025). To use these high-dimensional, unstructured data in demand models,
researchers often transform them into lower-dimensional numerical variables, or em-
beddings, using machine learning (ML) methods. Second, even numeric attributes
could be mismeasured (e.g., Nevo, 2001; Allcott and Wozny, 2014), or could be high-
dimensional and collinear, requiring dimension-reduction (e.g., Backus et al., 2021).
In all of these cases, the variables used as inputs in the demand model are prozies
for the true attributes that drive consumer choices. It is essential that these proxies
adequately capture the true dimensions of differentiation: poor proxies can lead to
biased estimates of demand model parameters and, in turn, biased counterfactuals.

In this paper, we propose a simple, post-estimation bias correction for counter-
factuals. We take the naive estimator that treats the proxies as if they were the
true dimensions of differentiation (as is implicitly done and reported in practice) and

add a correction term designed to achieve two goals. First, it is chosen to mitigate



the bias in counterfactuals arising from mismeasurement of the true dimensions of
differentiation. Second, it is chosen so that the bias-corrected estimator is efficient,
meaning that it has the lowest possible asymptotic variance among a broad class of
estimators. We also provide simple formulas for standard errors, making valid in-
ference easy. In addition, we show how two simple diagnostics can be used to help
assess the adequacy of different proxies in capturing substitution. Together, these
diagnostics help guide the choice of how many and which proxies/attributes should
be included in the model—practical questions that researchers need to answer in any
instance. Answering these questions is further complicated by the fact that, unlike
standard prediction problems, the counterfactual is not observed in the data.

We develop the bias corrections and diagnostics for two widely-used empirical
frameworks. The first follows Berry et al. (1995, 2004): prices vary across markets,
instrumental variables are used to address price endogeneity, and market-level data
may be supplemented with individual choice data for a subset of markets. Many
papers in industrial organization (IO) and fields using IO tools fit in this category.
The second framework consists of models estimated on individual choice data with
product-level fixed effects, which are very common in marketing applications (see
Dubé and Rossi (2019) for a review). While we illustrate our approach for workhorse
specifications (e.g., mixed logit with normal random coefficients), the method does
not rely on specific parametric functional forms.

The bias corrections and diagnostics are computationally light and integrate easily
into the standard demand estimation workflow. The bias corrections take as inputs
the naive parameter estimates, which treat the proxies as the true dimensions of
differentiation, and require neither bootstrapping nor any optimization. Similarly, the
diagnostics are Lagrange Multiplier (LM) statistics evaluated at the naive estimates.
All bias corrections, standard errors, and diagnostics admit closed-form expressions.
These involve first derivatives of choice probabilities and counterfactuals, which are
easily computed using automatic differentiation.

The key insight underlying our approach is that mismeasurement of the true
dimensions of differentiation using proxies induces a form of model misspecification,

as distinct from a measurement error problem.! We address this misspecification by

In our setting, the relevant unit of observation is the market and/or individual level, whereas
mismeasurement occurs at the product level. By contrast, mismeasurement is at the observation
level in a standard measurement error problem. Misspecification and measurement error both cause
bias, but do so for different reasons and require different corrections.



reparameterizing the model with a composite parameter that captures how proxies
interact with structural parameters to affect utilities. Different proxies correspond to
different values of the composite parameter. Framing the model in this way allows
us to target counterfactuals using standard two-step estimation methods, where the
first-step estimator corresponds to the composite parameter value pinned down by
the proxies and naive parameter estimates.

An advantage of this approach is that it allows us to correct bias while remaining
agnostic about the form of mismeasurement. This is particularly valuable because
proxies are often obtained via black-box ML models, making it difficult to justify
specific assumptions on the nature of mismeasurement. Importantly, the approach
accommodates proxies that depend on the choice data, such as when they are ob-
tained by fine tuning ML models on the same data that is used to estimate the
demand model. For instance, researchers may fine tune neural networks or LLMs to
obtain embeddings of product descriptions and images that better fit the observed
substitution patterns than those produced by off-the-shelf algorithms. Moreover, be-
cause we correct how proxies and structural parameters jointly affect utility rather
than the proxies themselves, our approach does not require practitioners to take a
stand on the units of the proxies and/or true dimensions of differentiation. This is
especially important for proxies for hard-to-quantify characteristics like visual design
or user friendliness that lack natural units of measurement.

Simulations confirm that the bias correction improves performance for a range of
levels of mismeasurement of the true dimensions of differentiation. Specifically, the
corrected estimator has lower bias and lower variance than the naive estimator across
all levels of mismeasurement. The bias correction leads to slightly higher variance
in the knife-edge case in which the proxies perfectly capture differentiation, but the
efficiency loss is small.? Simulations also confirm that our diagnostics convey useful
information for selecting which proxies to use when estimating counterfactuals.

Finally, using the experimental data from Compiani et al. (2025), we show that
the bias correction materially improves the model’s ability to predict counterfactual
choices following product removals. To this end, we leverage the fact that the data

features both consumers’ first and second choices. We estimate model parameters

2The fact that there is an efficiency loss in this knife-edge case is to be expected: the naive ap-
proach maintains the assumption that the proxies are measured without error, whereas the corrected
estimator does not. What is surprising is that the efficiency loss is relatively small.



on the first choice data alone, then compare how well the naive and bias-corrected
estimators predict second choices. The second-choice data provide a ground truth to
assess the effectiveness of our approach. The bias correction meaningfully improves
the model’s ability to predict a product’s closest substitute, improving the hit rate
from 40% to 70% for our preferred specification. Further, our diagnostics correctly
identify the set of proxies that perform best at the counterfactual prediction task,
indicating that they can be valuable tools for practitioners.

We emphasize that our approach is also helpful for practitioners using standard
numeric attributes. As noted above, mismeasurement may be a concern even in this
case, particularly when dimension-reduction methods are used to shrink the attribute
set. Our bias corrections provide a practical remedy. Further, the choice of which
attributes to include is generally ad hoc even with numeric attributes. Our diagnostics
help guide practitioners in making these decisions. Beyond mismeasurement concerns,
our approach yields easy-to-compute, efficient estimators of counterfactuals (even
when model parameters are estimated inefficiently) across many empirical settings,
including combined market-level and microdata (e.g., Petrin, 2002; Berry et al., 2004,
and many subsequent works). Our standard-error formulas also allow easy inference
without bootstrapping. To the best of our knowledge, these contributions are new.?

Our approach is related to double/debiased ML (DML), which has recently been
used in single-equation demand estimation with unstructured data (Bach et al., 2024).
Both aim to estimate a target parameter in the presence of nuisance parameters. In
our setting, the target is the counterfactual and the nuisance are both the latent
dimensions of differentiation, which are “estimated” using proxies, and the demand
model parameters.* Standard DML methods typically require models for the nuisance
parameters and access to the data used to estimate them. In contrast, our approach
accommodates proxies that are the outputs of black-box ML models trained on data to
which the researcher might have limited to no access. To do so, we reparameterize the

model via a composite parameter and rely on standard two-step estimation methods,

3Grieco et al. (2025) study efficient estimation of model parameters in mixed logit models with
combined market-level and microdata. Our focus is instead on efficient estimation of counterfactuals.
For counterfactuals that depend on data moments in addition to model parameters (e.g., average
welfare and average price elasticity), efficient estimators of model parameters do not necessarily lead
to efficient estimators of counterfactuals (Brown and Newey, 1998; Ai and Chen, 2012).

4In contrast, Bach et al. (2024) treats the embeddings as perfect proxies for product attributes.
Correspondingly, it uses DML to correct the estimation of nuisance functions as for partially linear
regression, not to correct for mismeasurement of product attributes.
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including an orthogonalization step which shares similarities with DML.

A recent literature recognizes that naively treating ML-generated variables as data
leads to measurement-error bias and develops corrections for it. But as noted above,
the problem we study is one of model misspecification rather than measurement error,
since the unit of observation (markets and/or individuals) is different from the unit of
mismeasurement (products). Moreover, almost all strategies in this literature rely on
validation data linking ML-generated variables and their ground-truth values.” In our
setting, however, the true dimensions of differentiation are latent and can at best be
only imperfectly proxied via survey data, rendering these methods inapplicable. One
exception is Battaglia et al. (2024) who develop analytical bias corrections without
validation data, but their approach is specific to linear regression.

The remainder of the paper is structured as follows. Section 2 presents our bias
corrections and diagnostics for BLP-type models, while Section 3 does the same for
models with individual-level choice data and product fixed effects. Each section first
presents the model, develops the bias corrections and diagnostics, and concludes
with a practitioner’s guide detailing the steps involved and giving practical recom-
mendations. Simulations and the empirical application are presented in Sections 4
and 5, respectively, with additional empirical results deferred to Appendix B. Sec-

tion 6 presents all theoretical results while all proofs are presented in Appendix A.

2 Case 1: Endogenous Prices

We first consider a setting where prices vary at the market level and identification is

achieved through instruments.

2.1 Model and Data

Following an established literature (Berry and Haile, 2014; Freyberger, 2015), we
assume that the researcher has data from a large number T of markets in which

(subsets of) J goods are sold.® In addition to the outside option (denoted by 0), each

5See, e.g., Fong and Tyler (2021); Allon et al. (2023); Angelopoulos et al. (2023); Egami et al.
(2023); Zhang et al. (2023); Carlson and Dell (2025) and references therein. These works build on
an earlier literature on auxiliary data (Chen et al., 2005, 2008).

SFor simplicity, we assume that J is fixed. It is straightforward to extend our approach to
asymptotic thought experiments where J grows slowly with the number of markets 7'



market ¢ features products J; C {1,...,J}, for which the researcher has access to
data on prices p; = (pji)jes, exogenous product attributes x; = (z;:) ez, and market
shares s; = (s;i)jes. Consumer choices are also driven by unobserved quality levels
& = (&t)jes- The model predicts market shares as a function of py, x;, &, and a

parameter vector 0:
sjt = 05(pr, v, &30),  J € Th. (1)

Prices p; are endogenous and may be correlated with the unobservables &. To address

this, we rely on a vector of instrumental variables w; = (wj;) ez that satisfy
El&ilz) =0, jed, t=1,....T, (2)

where z;; = (xj, wj). We also accommodate “micro BLP” settings (Berry et al.,
2004; Berry and Haile, 2024) where, in addition to the above, individual-level data
on choices and demographics are available in a subset of markets. The microdata
consists of choice indicators d;; = (d;j;);ez taking the value 1 if ¢ chose j in market
t and 0 otherwise, and demographic variables y;; that vary at the consumer level,
such as income, and/or g;;; that vary at the product-consumer level, such as distance
between a household’s home and a school or a hospital. We assume the microdata is
available for a fixed set of markets which, without loss, we label t = 1,...,7.7 We
treat the microdata within each market ¢ as a repeated cross section of size INV;.

This model subsumes many empirical specifications used in the literature. We

provide two simple examples below to fix ideas.

Example 1 (BLP). The utility that individual i derives from good j in market t is

Wit = Pixj — upje + &i + €, J € T, (3)

Uipt = €40t
where the ;5 are 1id type 1 extreme value random variables. Market shares are

eﬁlxjt*apjﬂrfjt

1+ Zkej eB'Trt—apki+Ekt d
t

Uj(pt,ft,xt;ﬁ):/ F(a,:0), je i, (4)

for some parametric distribution F.

"The case where microdata is present for all T markets is simpler and the associated derivations
are available upon request.



Example 2 (Micro BLP). The utility is specified as:

Ujjp = Bz{xjt — q;pjr + (Ijt,Pjt)/Hyit + 7T/y_z'jt + &t + €ijis Jje T, (5)

Uit = €i0ts
One can compute micro-moments using the following expression for individual choice

probabilities:

Pr(dije = UYit, Yits De, &t T3 0)
/ eB'zjt—opjit(@je,pie) yie+'Gije+& 51

F(a, $;0). (6)

d
1+ Zkej eB'Trt—apii+ @kt Pt ) TTyit +7 ikt +Eke
t

The expression for market shares is obtained by integrating (6) over the (known)

distribution of (Yit, Uir) for Y = (Fije)jes-
So far the model is standard. Our point of departure is to partition

T = (Tje, €5),

where Z;; is a vector of conventional observed product attributes, such as product size,
and e; is an r-vector of product attributes, such as visual design or user friendliness,
that are difficult to capture using standard numeric data. Accordingly, we treat
e = (€})7_, as known to the consumer but latent to the researcher. What is available
to the researcher are proxies € = (¢}) 3-]:1 for the true underlying e. Note that e does not
vary across markets, consistent with the fact that difficult-to-quantify characteristics
such as visual design or user friendliness are often fixed product characteristics.

In the leading case we study, the econometrician observes unstructured data Uj
and computes a low-dimensional representation €; of Uj;, often referred to as an em-
bedding, via ML methods. In this scenario, the embeddings ¢€; act as proxies for the
true latent e;. To maximize generality, we stay agnostic on the form that U; takes. It
could be text (product descriptions and reviews), images, audio/video components,
or a combination thereof (Compiani et al., 2025; Han and Lee, 2025), or consumer
preferences inferred from surveys (Magnolfi et al., 2025). Similarly, we are agnostic
on the ML method used to compute ¢;.

Unlike prior work, we wish to account for the fact that proxies €; are not the



ground truth but rather are approximations to the true latent e;. Different ML
methods correspond to different approximations and produce different biases in down-
stream estimates of counterfactuals. Our first main goal is to develop estimators of
model parameters and counterfactuals that are immune to this bias. Another goal is
to shed light on what a “good” proxy might look like from the perspective of estima-
tion and inference on counterfactuals. This objective is fundamentally different from
the standard problem of choosing proxies for a prediction problem, since in our case

the counterfactual is not observed in the data.

Remark 1. While we focus on embeddings computed from unstructured data, our
approach may be used more generally to correct bias from mismeasurement of any
product attributes that do not vary across markets (e.g., the “mushiness” of cereal
hand-coded by Nevo (2001)). In these scenarios, T; represents the attributes that are

not mismeasured and €; represents the prowies for the true latent attributes, e;.

2.2 Bias-Corrected Counterfactuals

We consider a broad class of counterfactuals that can be written as
ﬁ:E[k<pt7€tajt76;9)]a (7)

where the expectation is over the distribution of (p;, &, z;) across markets ¢. For
instance, k£ might represent an average price elasticity, average equilibrium price or
consumer welfare measure (possibly after a counterfactual change on the supply side).
Expression (7) also subsumes counterfactuals for a specific market, such as the price
elasticity at a given (p, &, ). In this case, k is a deterministic function of 6 and the
expectation becomes redundant. As we discuss below, x could also represent certain
elements of 6, such as the average price coefficient.

Given the observed aggregate data and a candidate set of proxies €, estimation

typically proceeds using GMM based on the moment®

T
1 2 -
fZZtgt(Staptajtve;e)a
=1

8With slight abuse of notation, we now write o as functions of z; and e, with the understanding
that o; depends on e only through (e;) ec7,, and similarly for &;.
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where ft(st,pt,ft, e;0) = (éj(st,pt, Ty, €;0))jey, is defined implicitly via
Sjt = Uj(puét,ft,@;e)a JE I, (8)

and Z; is a dim(z) x |J;| matrix whose columns contain zj; for j € J;. Here z;; may
be the original instruments in (2) as well as transformations thereof, such as when
sieves are used to approximate optimal instruments. When the researcher also has
microdata, the GMM criterion can be combined with a minimum-distance criterion
based on the micro moments (as in, e.g., Conlon and Gortmaker, 2025). Let m; =
N% vaztl m, where my = m(Yi, Ui, dir) is a known function of demographic and
choice data for individual 7 in market ¢. Let m(py, &, Ty, €; @) denote the model-implied

expectation of m;; conditional on the market-level data:

m(pe, &, Ty, €5 0) = Elma|p, &, T4, €].

Thus

my — m<pt7€t(8t7pt7 jtu é? 9)7'%& €; 9)7 t= 17 e T

give an additional set of micro-moments to match when estimating 6.

Given an estimate 6 of 6, the counterfactual  is usually estimated as

1 <& )

k= T tz; k(phét(shptajta €0),é é) (9)
We call this the naive estimator of k since it does not account for the fact that the
proxies € might differ from the true latent attributes e. This mismeasurement has the
potential to affect the estimator via two channels: (i) directly, since € is an argument
of k, and (ii) indirectly through both 6 and &,.
We now introduce a bias-correction procedure that is designed to mitigate the
bias from using € in place of the true e. We begin by restricting attention to models
in which the attributes e and model parameters 6 enter choice probabilities (4) via a

lower-dimensional composite parameter

v =7(0,e).

Many models feature this property. We illustrate it in the BLP example.



Example 1 (continued). We partition 5; = (Bz., Bes) and write the utilities as:
e = B i + Blie; — qipje + e + €, § € T

Suppose ay ~ N(dvo-?y); ﬁi’,i ~ N(Ba_rv Ea_?); ﬂe,’i ~ N(ﬂ_ey Ee); and Qy, Ba_c,i and ﬂe,i are
independent. Then,
0= (d7 Oa, B:fa Bea Z(Ei)> Z(Ze)) )

where I(X) stacks the lower-triangular entries of the Cholesky factor of ¥ into a
vector. Note that e; only enter via B ej. Collecting 5@726]- across products, we have

efBei ~ N(eBe,eXce), where eXee’ has rank r < J because e is J x r. Hence,

7(& 6) = (O_éa O, Bﬂ’m eBea Z(Ei)v lr(ezee/)) )

where 1, stacks the lower-triangular entries of the rank-r Cholesky factor of eX e’ .*

For instance, when both T; and e; are scalars and J = 2, we have

7(07 6) = (da Oq; Bﬁf? elBea 62/367 Oz, Ue|61|7 O—eQQSign(el)) 3

where oz and o. are the standard deviations of the random coefficients on z; and e;.

As can be seen from this example, parameters that do not interact with e are
left unchanged, as is the case for the average price coefficient &, for instance. For
the remaining components that interact with e, we expand the parameter space to
capture the effect of joint shifts in e (as, for instance, when € is used in place of e)
and/or #. A similar reparameterization for Example 2 is provided in Appendix C.

This reparameterization allows us to simplify notation as follows. First, we note
that the right-hand side of (8) depends on (6, ¢e) only via v(6,e). Thus we write
éjt(y(&e)) = éj(st,pt,ft,e;ﬁ) for j € J; (suppressing dependence on s;, p;, Z;) and
let &(v(0,€)) = (£;:(7(6,€)))jes. We similarly restrict attention to counterfactuals
that depend on (6, ¢) only via (0, e) and write ki ((6, ¢)) = k(py, &(7(0,€)), 7, e; 0).
This includes many counterfactuals of interest, such as elasticities with respect to

prices or 7, equilibrium prices, and welfare changes associated with changes in prices

9Tf ¥ and/or ¥, are diagonal, then we replace [(X;) and/or [(X.) with vectors containing their
diagonal entries.

0Ag eX e’ is J x J with rank r, its rank-r Cholesky factor is the unique J x r matrix L whose
above-diagonal entries are all zeros and whose diagonal entries are all positive, such that LL' = eX.e’.
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or . It precludes quantifying the effect of changes in the latent attributes e or
measuring heterogeneity in preferences for e, but these are of little meaning when
e has no natural scale or interpretation. When microdata are also available, we
note that the choice probabilities in (6) depend on (€, e) only via v(0,e) and write
my(7(0,€)) = m(py, &(v(0,€)), Ty, e; 0). Finally, we let 4 = v(0, €) denote the value of
~ at the estimated structural parameters 0 using the candidate proxies e.

With this notation, we can define the bias-corrected estimator

T T
. 1 N A £ s 5= .
e = > (R(3) = € 2&(%)) + D di(my —mi(9)) (10)
t=1 t=1
where ¢ is a dim(z) x 1 vector of weights for the aggregate moments and di, ..., d,

are dim(m) x 1 vectors of weights for the micro moments. Without microdata, the

bias-corrected estimator is simply

T
. 1 . A & fa
Kbe = T Z (kt(V) - Cthft(V))- (11)
t=1
We give closed-form expressions for ¢ and cil, e ,CZT below. The bias corrections are

easy to implement: they simply take the naive estimator %Zle k(7)) and add a
weighted average of the estimation moments. As such, they require minimal compu-
tation beyond what is needed to estimate model parameters 6 in the first place.

The idea behind (10) is to choose the weights ¢ and cfl, . ,cif so that Ap. does
not depend on 4 to first order.!! This means that, to first order, &y, behaves like the
right-hand side of (10) with 4 replaced by the true value vy = (6o, €9), where 6, are
the true structural parameters and e are the true latent attributes. In doing so, this
purges the first-order effect of proxying e with €. In Section 6.1, we show that, as a
result, the asymptotic distribution of &y, is centered around the true counterfactual g
and does not depend on 4. This has two important implications: first, k. is immune
to any bias arising from proxying e with €, and second, standard errors do not need
to be corrected when € is chosen in a data-dependent way, e.g., by fine tuning an ML
model on choice data.

For the intuition, consider the case without microdata. A Taylor expansion of the

"UThere is a long tradition of using corrections such as these in two-step estimation. See, e.g.,
Andrews (1994a) and Newey (1994). Of course, similar debiasing ideas underlie the DML literature.

11



naive estimator yields

Xi: <kt ) kym (¥ — %))

We wish to eliminate the second problematic term depending on 4 —~y. To do so, we

'ﬂ |

replicate the dependence of & on 4 — vy using the estimation moments. This means

that the vector of weights ¢ will be chosen so that

~

1 < Ok(4) _ agt

There are many different weights ¢ with this property; the weights introduced below

are designed to minimize the asymptotic variance of &,.. Substituting in the previous

display and “undoing” the Taylor expansion, we get

- oy 06 (9)
TZ (kt Y) + ¢ Z, B (¥ - 0))

t

| —

!

~
~

(ki) + € 2:63) = ¢ 2i&u(10))

t=1

N[ =

This suggests that to correct bias we want to adjust the naive estimator by subtracting
T ST (@ ZE4(5) — ¢ ZiE(7)). The final (infeasible) term depending on 7, has mean
zero by virtue of (2), so we drop it, leading to the corrected estimator (11). This
correction therefore ensures that, to first order, k. depends only on ~q.

What assumptions are needed for this result? Besides standard regularity condi-
tions, we require that the discrepancy between 4 and the true value vy not be too
large relative to sampling error (see Section 6.1 for a discussion). Figure 2 shows that,
in simulations, &,. has negligible bias up to moderate amounts of mismeasurement
(and thus moderate deviations of 4 from ~y), while for high amounts of mismeasure-
ment (and thus large deviations of 4 from ~y), the bias of &y, is still well below that
of the naive estimator. We also implicitly require that the e; and €; have the same
dimension r. In the next subsection, we provide two diagnostics to help researchers

choose among proxies so that both these conditions are plausibly satisfied.

12



T
~ 1 R a L L
V= T (Z&(ONZi(7)) — 99,

t=1

Ny

N T 1
Vi=— | — i / t= 17 s 1y
t Nt Nt ; m tmlt mtmt) s T

denote the sample variance of the estimation moments, where g = %Zthl Z,6(5).
Define

H=GV'G+) MV M, (12)

where k = £ 321 k(%) is dim(y) x 1, K = 321 k(3) Zi&(5) is dim(z) x 1, G

+ 31 Zi&i(3) is dim(z) x dim(y), My = ring(§) is dim(m) x dim(y), and k(y) = 252,

&(v) = %(J)/, and () = amat—y)/ are dim(y) x 1, dim(y) x J;, and dim(~y) x dim(m),

respectively. The weights to plug into (10) are

=

¢=V YK +GHh), (13)
and
dy =V, 'MHh, t=1,...,T. (14)
Without microdata, d; = ... =d, =0 and H = G'V1G.

We defer formal statements of the results sketched out above to Section 6.1, and

instead highlight a few key properties of the corrected estimator.

Remark 2 (Easy to compute standard errors). The asymptotic variance of the bias-

corrected estimator can be estimated as follows:

Vie= 8 +dVe—28(K —kg) + > dVid,, (15)

t=1

where 87 = L3°7  k(4)? — k* and k = £ 37, k(5) are the sample variance and

sample mean of k(7). Without microdata, the expression simplifies to

Vie =824+ ¢Ve—2¢ (K —kg). (16)
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In either case, standard errors for A, are Vbc/T. Again, these are closed-form

expressions involving quantities that are easy to compute given 0.

Remark 3 (Efficiency). The weights ¢ and cil, e ,cif are chosen so that the asymp-
totic variance of k. (and thus standard errors) are as small as possible: see Proposi-
tion 2 in Section 6.1 for a formal statement. Importantly, /. remains efficient even
if § is inefficient. Thus, there is no need to estimate 6 using an optimal weighting

and/or optimal instruments.

Remark 4 (Fine Tuning). The bias correction in (10) and standard error formulas in
Remark 2 allow the proxies € to be sample-dependent. In the context of embeddings,
this accommodates scenarios where an off-the-shelf algorithm has been fine tuned on
the choice data to provide a better fit. Because k. doesn’t depend on é to first order,

there is no need to correct the standard errors for fine tuning.

2.3 Diagnostics

Next, we propose two diagnostics that practitioners can use to assess the suitability
of a candidate set of proxies €. The first speaks to whether 4 = 'y(é, é) is sufficiently
close to the truth vy = 7(6p,e0). The second addresses the question of whether
the dimension of € matches that of ey. Both diagnostics are based on LM statistics

evaluated at 4, so they require minimal additional computation.

2.3.1 Diagnostic 1: Is 4 Close To v,?

The bias correction is based on linearization and thus requires the discrepancy be-
tween 4 and vy to not be too large relative to sampling error, as discussed above. Here
we show that a simple LM statistic can be used to validate this condition. This diag-
nostic is also helpful to guide the choice among sets of embeddings (e.g., embeddings
obtained from various data source and/or ML model combinations).
The first diagnostic is
LM, = |VTH™Y23|?, (17)

where S = G”\A/’l(% S ZE(A) + S, MUV, (my(7) — y) Tepresents the “score”
at 4 and H is given in (12). This diagnostic can be interpreted as the LM statistic in

a test of the null hypothesis that =, is in the set of composite parameters spanned by
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the candidate proxies €, ignoring the fact that € is possibly stochastic.'?> Proposition 4
below shows that LM, behaves like ||[v/T'(¥ —7o)||? as the sample size grows large. In
other words, researchers can validate the assumption that the discrepancy between
4 and 7, is sufficiently small, as needed in Proposition 1, by checking whether LM,
is below a threshold. In particular, for any sequence Oy = o(T'/4), we have that
LM, < C2% implies ||¥ — yo|| < constant x Cp/vT = o(T~*) with probability
approaching one. It can also be shown under a slight strengthening of the conditions
of Proposition 4 that LM; can be used to bound ||é — egl|, providing a measure of
how well the proxies ¢ capture the true latent attributes e driving consumer choices.
This is especially useful as the true eg can never be observed. As a result, LM; also

serves as a model-based criterion to target when fine tuning.

2.3.2 Diagnostic 2: Is The Dimension of ¢ Correct?

When estimating this type of model, practitioners also have to choose how many
attributes to include. In our notation, this corresponds to choosing the dimension of
e. This is particularly delicate in the cases where the candidate proxies don’t have
a natural economic interpretation, as is typically the case when they are obtained
from black-box ML algorithm or by applying principal component analysis (PCA) to
a rich set of numeric attributes. For example, in the application of Section 5, we use
PCA to reduce the dimensionality of proxies obtained from pre-trained algorithms;
the relevant question is then how many principal components to include in the model.

We provide guidance on this by again considering a diagnostic based on an LM
statistic. The idea is to augment é with a vector n € R’ representing some excluded
but potentially important product attributes and augment # with an additional com-
ponent ¥ € ¥ representing coefficients on 7. The second diagnostic is based on an
LM statistic for the null that » = 0. Like LM, this diagnostic depends on 6 only
and therefore requires minimal additional computation.

To introduce the diagnostic, we extend v to ¢ = (7y,%). With slight abuse of
notation, we now write éjt and m; on this extended space as functions éjt(g :m) and
m¢(¢;n) of ¢ and n, with the understanding that fjt(’y) = éjt((’y, 0);7) and my(y) =

2Formally, a test of Hg : 70 € T'(€) := {7(0,¢€) : 6 € ©} against the alternative H; : vo € T'\ T'(€),
where © and I' are the parameter spaces for § and ~, respectively.
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T /
~ 1 ~ A~ ~ ~ o~
M) = | 7 D Zew(3, n)) VNI - G@EVTIG) T GV YT, (18)
1
Ae(n) = w (3, n)V, (I = MMV M) MV OVT (my (7)) —me), (19)

where wy(v,m) = (wje(v,m))jes is |Te| x dim(¢) and u.(7y,n) are dim(¢)) x dim(m),
with

aA‘t y 3 . / . a t 9 3 '
wi(y, 1) = lim 2l 9)im) ((gf) 77)’ J€J  wlym) = lim - <<g¢w) W

We take limits to deal with parameters that are at the boundary when ¥ = 0, such as
the variance of the random coefficients on 7. For the intuition, the left-most terms in
(18) and (19) are the Jacobian of the moments with respect to 1. These can depend
to first order on 4. The second parts of these expressions eliminate this dependence

with a similar correction to Ay.. We estimate the variance of A()) and \¢(n) using

~ 1

T / T
n 1 A S NYr—1 =1 A1y r— N
A(n) = (f > Zm(%n)) V(I -G@EVTG) TGV (T > tht(%n)>,
t=1

Ae(n) = up(3.m)' Vo (I = MMV, M)~ MV, ue(9, 1)

Finally, define
W(n) = (ﬂ(n) +) it(n)) (f\(n) +) f\t(n)> (X(n) +) Mn)) :

Without microdata, W (n) simplifies to W (n) = A(n)'A(n)~*A(n). The statistic W ()
can be shown to behave like a Xglim( ») random variable under the null (i.e., when the
true ¢» = 0), but it depends on the nuisance parameter 7. Thus, we define our second

diagnostic as

LM, = sup W(n), (21)

neSJymLC (&)

where we take the supremum over 7 in the unit sphere (since the scale of 7 is not

important) that are orthogonal to the column span of é.
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Following, e.g., Hansen (1996), critical values can be computed by simulation.

Draw (w?)L,, (wi)M, ..., (@)Y iid from a N(0,1) distribution, and set

W*(n) = (X*(n) +> xZé‘(n)) (f\(n) +) Mn)) (X*(n) +> 32‘(77)) ,

For each collection of N(0, 1) draws, compute

LM; = sup W*(n)
nesS’mLC(e)

Let 53.95 denote the 95th percentile of LM across a large number of independent
draws. This quantity is easy to compute, as only the right-most terms in the expres-
sions for A\* and 5\;“ need to be recomputed for different draws and these terms do not

depend on 7. We reject the null that the dimension of € is adequate if LMy > & o

Example 1 (continued). Let the random coefficient on n be §; = ¢y ++/12Z;, where
Z; ~ Fy has mean zero and unit variance, {1 € R, and 1y € [0,00). For simplicity,
suppose Ty is empty and |J| = J. Define the functions o;(-; (v,%),n) and ;(-;7)
from R to R by

ajt(§e; (7, 9),m) = /§]t &+ (P + \/_z )1;7y) dEy(z

e—oz’pjt+ﬁ’ej+uj
au(wn) = | , aF (0, 9)

1+ Zkejt e~ prtt+Bentug

where we have suppressed dependence on p;. Here éjt((; n) solves s;; = th(é; ¢,n) for
j € J;. Evidently, éjt(’y) = éjt((fy, 0);m). Using <jy and S to denote the first and
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second derivatives of g with respect to its first argument, we have

i 0. 0)im): (. 9). 1) :[ 7' (&(1):7) ]
o o W& vm |

It follows by the implicit function theorem that

) = - <8‘”(§”§§%0>’”)> (W@t Srsutéaam )

)
JET

where 0,(&;¢,n) = (01(&; ¢, n))jeq,- Plugging this into (18) and (20), one can com-
pute W (n) and thus the LM, diagnostic.

2.4 Practitioner’s Guide

Given a counterfactual of interest x and a candidate set of proxies é:
1. Calculate the model parameter estimates 0 as usual, treating € as the truth.
2. Compute weights ¢ in (13) and, if microdata is available, weights d; in (14).

3. Plug the weights in (10) to compute the corrected estimator .. If only aggre-

gate data is available, use (11) instead.
4. Compute standard errors for & using Remark 2.
5. To check whether a given set of proxies € is adequate:

(a) Compute the LM statistic in (17). If it’s below a threshold C%, conclude

that € is sufficiently close to ey. In Section 6.1.2, we motivate a threshold

of CF = Xiim(y).0.05 108 T to deliver a rate of /(logT')/T.
(b) Compute the LM, statistic in (21). If it’s below a threshold & o5, conclude

that € is of adequate dimension. The bootstrap method in Section 2.3.2

can be used to compute & o5.

2.5 What About Models with Standard Numeric Attributes?

Our approach also provides a data-driven way to robustly estimate counterfactuals

and validate some of the assumptions implicitly made in the demand estimation lit-

18



erature in contexts where only standard numeric attributes are available. The typical
workflow assumes that product attributes are measured without error and are of ad-
equate dimension. Our bias correction allows practitioners to relax the assumption
of correct measurement. To do so, the bias-corrected estimator can be implemented
as above, where now € simply represents the numeric attributes that may be mis-
measured. The resulting bias-corrected estimator is robust to such mismeasurement.
Similarly, our diagnostics may be used to choose among attributes and assess whether
the dimension of a candidate set of attributes is adequate.

Even when mismeasurement is not a concern, our bias-corrected estimator and
standard error formulas can be used to perform efficient inference on counterfactuals
(see Proposition 2 below for a formal statement). In this case, there is no need to
reparameterize the model to account for mismeasurement and both are implemented
as described above with v = 6. This approach offers a few advantages: (i) it yields
efficient estimates of counterfactuals even when 0 is inefficient, (ii) standard errors
are available in closed form, avoiding the need to bootstrap; and (iii) it allows for

combined market-level and microdata.

3 Case 2: Individual-Level Price Variation and
Product Fixed Effects

Next, we consider settings with individual-level price variation and choice data. Fol-
lowing an established literature (Dubé and Rossi, 2019), we assume the researcher
includes product fixed effects to account for systematic differences across products

and is willing to rule out any remaining price endogeneity.

3.1 Model and Data

The researcher has data on a large number n of consumers in a single market in which
J goods are sold,'® and identifies the outside option with j = 0. For each consumer
1, the researcher observes individual choices d; = (dz‘j)}]:1 where d;; = 1 if ¢ chooses

good j and 0 otherwise, p; = (pij)}]:l which collects prices and other variables (e.g.,

13 As before, we assume that J is fixed but it is straightforward to extend our analysis to asymp-
totic thought experiments where J grows slowly with n. For ease of exposition, we present results
for a single market, though our approach extends easily to settings with multiple markets.
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rankings on the results page) that vary across consumers, and a vector of demographic
variables y;. For each product j, the data also may contain attributes z; that are
common across all consumers. The model predicts choice probabilities as a function

of pi, yi, © = (x;)7_,, and a parameter vector 6:
P"r’(dw:le,yl,x,@):aj(pz,yl,x,ﬁ), ]:1,,J (22)

This model subsumes many empirical examples. Here we give just one standard

workhorse model.

Example 3 (Mixed Logit with Fixed Effects). The utility that individual i derives

from good j is of standard mized-logit form with microdata:

wiy = afpi; + By + @illy; + & ey, j=1,.0,,

U;0 = €40,

where &; is a product fized effect and the €;; are iid type 1 extreme value random
variables. The vector x; collects characteristics with random coefficients only; char-
acteristics with non-random coefficients are absorbed into the product fized effect ;.

Choice probabilities are

e Pij 8w+ yi+¢;

J I . / / .
1+ Zk:l e Pik+B Trtm) Iy +E)

o;j(pi, yi, x;0) = /
where F' is a parametric distribution and 6 contains (fj)jzl and other parameters.

As before, we partition z; = (Z;, e;), where Z; is a vector of standard observed
product attributes, such as product size, and e; is an r-vector representing product
attributes that are harder to capture using standard numeric data and which we

treat as latent to the econometrician. We again assume the researcher has proxies

¢ = (&)J_, for the true underlying e = (¢€})7_, and stay agnostic on the form that
¢ takes. A leading case is again the scenario where €; are embeddings computed to
represent unstructured data U;, though our approach may equally be used in scenarios

where €; represents some potentially mismeasured product attributes.
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3.2 Bias-Corrected Counterfactuals

We are interested in estimating a counterfactual of the form
K= E[k<pza Yi, j? €; 6)]7

where the expectation is over the distribution of (p;,y;). Here x might represent an
average price-elasticity of consumers, average equilibrium price, or average welfare
measure. It could also represent a quantity that doesn’t depend on the distribution
of (pi, yi), such as the price-elasticity or welfare measure for an individual with given
y facing given prices p, in which case the expectation is redundant.

In the usual workflow, model parameters are estimated using the observed data
and a candidate set of proxies €. For instance, one could use maximum likelihood.

Given an estimate 6 of 0, the counterfactual x is usually estimated as
1 n
1=

As before, we refer to this as the naive estimator of k since it does not account for the
fact that the proxies € might differ from the true latent attributes. Mismeasurement
of e affects the naive estimator of x both directly, since € is an argument of k£, and
indirectly through bias in the first-stage estimate é, since € enters the likelihood.
We now introduce a bias-corrected estimator of x that is designed to mitigate the
effects of using € in place of the true e. As before, we consider models in which e and

0 enter choice probabilities (22) via a composite parameter

v =70, ¢).

As before, many common specifications have this property. We illustrate it in our

leading example.

Example 3 (continued). We partition 5; = (Bz, Bei) and I1 = [1I; 11| and write

the utilities as:
uiy = ipij + iey; + iley; + & + B @5 + Blae; +eij, j=1,...,J,
Suppose Q; ~ N(d7 204)7 /Bi,i ~ N(Oa Ei); and 5e,i ~ N(Oa Ze): and Qy, ﬁf,i; and /8€7i
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are independent. Recall the notation | and l,. from Fxample 1. Then,

where & = (&;)7_,, and v(Il) stacks the entries of II into a vector. Collecting S} ;e;

across products, we have ef3.; ~ N(0,eX.e’), where eX e’ has rank r < J. Hence,

v(0,¢e) = (@, & v(Iz), v(ell,), [(Xa), 1(Xz), I (eXee)).

As before, parameters that do not interact with e, such as & and &, are left unchanged,

whereas we expand the parameter space for those that interact with e to capture the
effect of shifting e and/or 6.

We shall implicitly assume in what follows that the right-hand side of (22) depends
on (f,e) only via v(#,e). We similarly restrict attention to counterfactuals that

depend on (6, ¢) only via (0, e) and write

0i;(7(0,€)) = s;(piyi, T,€;0), j=1,...,J,
k’i(fY(Q?e)) = k(pzuyzaj)e70)

We then define the bias-corrected estimator

n

e = = 3 (3) + s — (1) (23)

i=1

where 4 = v(6,¢), and ¢, d; = (dij)]—y, and 0;(7) = (0y(7))]=, are J x 1, vectors,
with
¢ = Vi) roi() H Tk, (24)

where V;(7) = diag(0s(7)) — 0i(v)o:(7)" and H = L1377 6:(9)'Vi(3)7'6:(§) are of
dimension .J x J, k = LD ki(7) and k;(v) = aka"—,(j) are dim(vy) x 1, and &;(y) =
8”5—(])/ is dim(vy) x J. Importantly, Ry involves closed-form expressions of objects
that can be easily computed given the estimate 6. As a result, it requires minimal
computation beyond what is needed to estimate the model.

As before, Ry, takes the naive estimator and adds an adjustment term that purges
the effect of 4 on ky. to first order. Proposition 5 in Section 6.2 shows that the

asymptotic distribution of &y, is centered around the true counterfactual ko and does
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not depend on 4. This means &, is immune to any bias arising from proxying e
with €, and its variance is not impacted by data-dependent €. We defer the formal

statement of these results to Section 6.2 and instead highlight a few key properties.

Remark 5 (Easy to compute standard errors). The asymptotic variance of K. can

be easily estimated using
=82+ 1S eV (25)
i l

where 82 is the sample variance of k;(). Standard errors for #y. are then \/Vbc/ n.

Remark 6 (Semiparametric Efficiency). We may view model (22) as a conditional

moment model based on the moment condition

oi(v) = Eld;i|pi, ys, 7). (26)

In Section 6.2, we show that the asymptotic variance of 4. is the semiparametric
efficiency bound for estimating s in model (26) (Brown and Newey, 1998; Ai and
Chen, 2012). Thus, there do not exist regular estimators of x in model (26) with

smaller asymptotic variance than the bias-corrected estimator k..

Remark 7 (Fine Tuning). The bias correction in (23) allows the proxies € to be
sample-dependent, for instance because an ML algorithm has been fine tuned on the

choice data to provide a better fit. As before, there is no need to correct the standard
errors: one can use 1/ %C/ n with Vbc as above whether or not ¢ is data-dependent.

3.3 Diagnostics

Here we propose two diagnostics that can be used to assess the suitability of a candi-
date set of proxies €. The first can be used to assess whether 4 = ’y(é, é) is sufficiently
close to the truth v9 = (0, eg) as required by our theory in Section 6.2. The second
can be used to determine whether the true e are higher dimensional than the proxies
e. Both diagnostics are again based on LM statistics so that they require minimal
additional computation. Later, we will show that these two diagnostics perform well

in finite samples via both simulations and in our empirical application.
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The standard demand estimation workflow implicitly assumes that product at-
tributes are measured without error and are of the correct dimension. Our diagnos-
tics may be used to assess the validity of these implicit assumptions even in standard

contexts with only quantifiable attributes.

3.3.1 Diagnostic 1: Is 4 Close To 7,7

As in Section 2.3.1, a simple LM statistic can be used to check whether 4 is suffi-
ciently close to 7. This diagnostic is also helpful to guide the choice among sets of

embeddings obtained from various data source and/or ML model combinations. Let
LM, = ||v/nH™Y28|1?, (27)

where S = DI Z}]:o %dzj(?) is the score and H is the (expected) Hessian,
defined below (24). As before, this diagnostic can be interpreted as an LM statistic
for a test of the null hypothesis that v is in the set of composite parameters spanned
by €. Proposition 6 below shows that LM, behaves like ||v/n(%—"0)||* as n grows large.
This allows researchers to validate the assumption that the discrepancy between 4 and
Yo is sufficiently small, as needed in Proposition 5, by checking whether LM is below
a threshold. In particular, for any sequence C, = o(n'/4), we have that LM, < C?
implies |5 — 70| < constant x C,//n = o(n~'/*) with probability approaching one.
Further, Proposition 7 shows that LM; can be used to bound the discrepancy between

e and eg.

3.3.2 Diagnostic 2: Is The Dimension of ¢ Correct?

The construction follows similar ideas to Section 2.3.2. We augment € with a vector n
representing additional attributes not included in € and augment 6 with an additional
component 1 € ¥ representing coefficients on 7. Correspondingly, we extend 7 to
¢ = (v,%). With slight abuse of notation, we now write choice probabilities on this
extended space as 0;;((;n), with the understanding that o;;(v) = 0:;((7,0);n).
Consider an LM test of the null hypothesis that ¢» = 0. Such a test could be based

on the score

LYY (i), 29
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where

0o ((7,%);m) ‘

Example 3 (continued). Let the random coefficient on n be §; ~ VZ;, where ¢ €
[0,00) and Z; ~ Fy has mean zero and unit variance. For simplicity, suppose I1 = 0.
Define the functions o;;(-;(v,%),n) and G;(-; (v,%),n) from R? to R by

ou (1, )i ) = / G (€ + VI ) dFo(2),
o'pij+Bej+uy;
Cij(u; ) :/ c dF (a, B),

J )
1+ Zk:l e pik+Bextug

where we have suppressed dependence on p;; and T. Using <;; and & to denote first

and second derivatives of c;; with respect to its first argument, we have

doi;((7,9);n
o

) _ 2\;@/277/%(5+ Vinzy) dFy(2).

and so wi;(7v,n) = 205 (&)n. The term wi;(Y,m) = %n’fij(é; F)n is plugged into the
LM, statistic below.

The statistic (28) can still depend to first order on 4. To eliminate this dependence,
we perform a similar correction to Ky.. Let gi(v;n) = wi(y,n)Vi(y) " d; — 0:(7)),
where w;(v;n) = (wi;(v;n))7=; is J x dim(¢)). Then define the dim(+) x J matrix

&i(n)' = (l > wiFn)Vi(3) ' a(d) + au¥; 77)) H'6:(3)'Vi(3) ™,

205030 s dim(y) x dim(t)), and let

n

A(n)=% G (s —a(3), Al =~ 3 &) Vi@)a(m).

i=1 i=1

S|

Finally, let

A ~ ~

W(n) = An)An) " A(n).

It can be shown that the statistic W(n) behaves like a X?Iim(w) random variable under

the null (i.e., when the true ¢» = 0), but it depends on the nuisance parameter 7.
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Thus, we again define our second diagnostic as

A

LMy, = sup W(n).
nesSynLC(é)

Critical values can be computed by simulation: for iid N(0,1) random variables
(wf)i,, compute
LM; = sup W< (n),
n€STmLC(E)

where V() = A (n)/A(n) 13" (), with A*(n) = &= Y0 wiés(n)(ds — oi(4)). Note
A*(n) factors into the product of terms involving 7, which only need to be computed
once, and terms involving (w;) ;, which are trivial to compute. Let 58.95 denote the
95th percentile of LM across a large number of independent sequences (w})?_,. The

null that the dimension of € is adequate can be rejected if LMy > 56.95.

3.4 Practitioner’s Guide

Given a counterfactual of interest x and a candidate set of proxies e:

1. Calculate the model parameter estimates 0 as usual.

(\V]

. Compute weights ¢ in (24).

w

. Plug the weights in (23) to compute the corrected estimator Ape.
4. Compute standard errors for & using Remark 5.
5. To check whether a given set of proxies € is adequate:

(a) Compute the LM statistic in (27). If it’s below a threshold C?, conclude

that € is sufficiently close to eg. In Section 6.2.2, we motivate a threshold

of CF = Xiim(y) 095 108 7 to deliver a rate of /(logn)/n.

(b) Compute the LM, statistic in (28). If it’s below a threshold & 4., conclude
that ¢ is of adequate dimension. The bootstrap method in Section 3.3.2

can be used to compute & 5.
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4 Simulations

We first illustrate our approach in simulations. We consider the model in Section 3
with 10 products and 10,000 consumers. These figures are in line with the data used
in the empirical application in Section 5. We model utility as a function of price and
two-dimensional latent attributes e (in addition to idiosyncratic shocks). The latent
attributes e; are drawn iid N(0, 1) across products. Individual-level prices are drawn
iid from a N (5, 1) distribution and vary across simulations. The random coefficient on
price is N(—1,0.3%) and the coefficients on the latent attributes are iid N(0,0.75%).
We keep the latent attributes e fixed in the data generating process and vary the

amount of mismeasurement in the proxies € that are used in estimation. Specifically,

éj=(1—ple;+1—(1-p)n, (29)

where 7); is a two-dimensional standard normal random vector drawn iid across sim-

for every j, we let:

ulations and p determines the amount of mismeasurement in ¢. When p = 0, the
proxies exactly match the latent attributes, whereas as p increases towards 1 the
proxies are increasingly mismeasured. We note that this simulation design imposes
very few restrictions on the form of mismeasurement. In particular, depending on
the draw of 7;, each element of €; could be smaller or larger than the corresponding
element of e; and this can freely vary across goods j.'*

We focus on estimation of the fraction of consumers that switch from one product
to another one when the former is removed from the choice set. Figure 1 plots his-
tograms of the naive estimator that takes the proxies € as true and the distribution
of our bias corrected estimator across simulations. As the level of mismeasurement
increases, the distribution of the naive estimator moves away from the true value of
the counterfactual (roughly 0.05), whereas the corrected estimator remains centered
around the true value. Interestingly, for larger levels of mismeasurement, the dis-
tribution of the naive estimator ends up being centered around the counterfactual
prediction of the logit model with no random coefficients. This is intuitive: as the
proxies € become increasingly noisy, they capture less of the substitution patterns

in the data, and the estimated variance of their random coefficients shrinks towards

Note that (29) is such that ¢; has roughly the same amount of variation across goods j as ¢;
does. This allows us to isolate the effect of mismeasurement in a way that is not confounded by
changes in the scale of the proxies é; used in estimation.
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Figure 1: Distribution of the naive and bias-corrected estimators
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zero. This finding also serves as a warning that mismeasurement in the proxies can
defeat the purpose of estimating a random coefficients model in the first place: if
the mismeasurement bias is not properly accounted for, the model may revert to the
restrictive substitution patterns that the model was specifically intended to relax.
To better assess the trade-offs involved in our bias correction, Figure 2 shows how
the bias and RMSE of the two estimators vary with the amount of mismeasurement
p. When é€ is measured with no error, both the naive and the bias-corrected estimator
have very low bias. Our estimator has a marginally higher RMSE, indicating that its
variance is slightly higher than that of the naive estimator. This is intuitive: since
the naive estimator leverages the assumption that the proxies ¢ are correct and ours
does not, we obtain slightly less precise estimates when that assumption happens to
be correct. However, this is a knife-edge case. When mismeasurement is present, our

estimator consistently achieves lower bias and RMSE than the naive estimator. The
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Figure 2: Bias and RMSE of the naive and bias-corrected estimators
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comparison is especially striking for small to moderate mismeasurement (p € [0,0.3]),
where the bias correction is able to remove essentially all of the bias. As expected,
when the mismeasurement becomes very large (p > 0.5), the bias correction starts to
also perform worse. This is because the bias correction requires that 4 be within a
vicinity of vy that is roughly double the order of sampling error.

Finally, Figure 3 shows that the LM; diagnostic discussed in Section 3.3.1 is
able to correctly rank proxies. In particular, the average LM, statistic increases
monotonically with the average distance between the 4 induced by the proxies and
vo- This confirms that the diagnostic can be valuable in guiding researchers towards

proxies that are relatively close to the true latent attributes.

5 Empirical Application

We now apply our method to the experimental data from Compiani et al. (2025).
The data records the choices made by 9,265 participants when faced with a choice
of ten e-books. In a first task, participants were asked to choose their preferred e-
book based on information displayed to them, including (randomized) prices, standard
attributes (author, year of publication, genre and number of pages), and unstructured
information (cover images, titles, plot descriptions and reviews). In a second task,
each participant’s first choice was removed and they were asked to choose again from
the remaining nine books. Compiani et al. (2025) estimate a range of models on the
first choice data and compare their performance in predicting second choices. This
gives a direct measure of how well different models capture counterfactual substitution

patterns. Specifically, the paper compares mixed logit models based on standard
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Figure 3: Distance between 4 and 7, versus LM; diagnostic
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attributes with mixed logit models that leverage proxies extracted from unstructured
data. The key findings are that (i) unstructured data is predictive of substitution
patterns, and (ii) book descriptions and reviews, when processed with transformer-
based text models, perform particularly well at predicting substitution.

The results in Compiani et al. (2025) treat the proxies as if they were correctly
specified. However, there are good reasons to believe that mismeasurement might
play an important role. First, the unstructured data are processed using pre-trained
ML models that are not targeted towards predicting substitution patterns.'®> While
the resulting proxies are found to be predictive of substitution patterns, they may not
perfectly capture the underlying attributes that drive consumers’ choices. Second, the
dimension of the proxies is reduced via PCA before inputting them into the demand
model, which is likely to introduce further mismeasurement. This also raises the
question of how many principal components should be included in the model.

Here we investigate whether applying our bias correction method and diagnostics
helps better capture substitution patterns. We use the approach from Section 3 since

we have individual-level data and prices are randomized, so endogeneity is not a

15Specifically, images are processed via classification models trained to assign each image to one
of many classes; texts are processed using bag-of-words and transformer models: the former simply
capture word frequency, whereas the latter are trained to predict the next word in a text.
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concern. We focus on the ability of different models to correctly predict the closest
substitute for any given book. The second choice data give us a direct measure of
this: for a given book A, its closest substitute is the book that most people switch to
when A is removed from the choice set.

We note that this exercise sets a high bar for our approach. Unlike in a simulation,
the demand model might be misspecified even if the proxies are correctly specified.
For instance, the model assumes a normal distribution for the random coefficients
but the true distribution of preference heterogeneity might be different. As a result,
this exercise tests whether our approach works well even in cases where all assump-
tions needed for the theoretical results might not hold exactly. Further, by looking
at substitution patterns in response to product removals that are not part of the
estimation data, this provides a direct test of the model’s ability to correctly predict
counterfactuals.

Figure 4 shows the results. For each specification—defined as a combination of
unstructured data source and ML model used to extract proxies from it—we report the
fraction of the ten books for which the model correctly identifies the closest substitute
(as measured by the second choice data).'® The hashed bars show the performance
of the naive approach that uses the estimates from Compiani et al. (2025), whereas
the green solid bars show the performance of the bias-corrected estimator. Three
specifications are ruled out by the diagnostic LMs, indicating that they don’t feature a
sufficient number of random coefficients. For 11 out of the 13 remaining specifications
(around 85%), the bias correction weakly improves performance and the magnitude
of the improvement is large in several cases. In particular, for specifications using
reviews data, the fraction of correctly predicted substitutes goes from 40% to 60-70%.
For comparison, a coin flip would achieve a hit rate of 11%. Further, the specification
fitting the data best as measured by the LM; diagnostic is among those achieving the
best counterfactual performance (70% with bias correction). These results confirm
that our approach is able to meaningfully improve counterfactual predictions and

guide researchers towards the best-performing specifications.

6The model prediction of the closest substitute is the product with the highest average (across
consumers) second-choice probability once product A is removed. Here, k corresponds to the proba-
bility that B is a consumer’s second choice conditional on A being their first choice, averaged across
consumers, which we compute across all (A, B) pairs.
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Figure 4: Rates of correct closest substitutes predictions.
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Notes: Solid bars show the fraction of books for which the bias-corrected estimator correctly
identifies the closest substitute. Hashed bars show the corresponding figures for the naive
estimator. The specifications ruled out by the LMs diagnostic are grayed out. A star flags
the specification with the smallest LM; diagnostic.

6 Theory

6.1 Case 1: Endogenous Prices

Let I" denote the set of all values of (0, e) as 6 varies over the parameter space © and
e varies over all J x r matrices with linearly independent rows. We shall implicitly
assume in what follows that the true latent attributes ey and the proxies € are J X r
with linearly independent rows. We shall also implicitly assume that I' is convex
and open. This is true for the (6, e) given in Examples 1 and 2, for which I' is the
product of copies of R and (0, 00) and is therefore convex and open.!” In Section 2,
the counterfactual function k;, & from (8), and micro-moments m, depended on (6, e)
only through the value of v(,e). We can therefore view ki, ét, and m; as random

functions defined on I'.

17 For instance, the operation [ stacking the lower-triangular entries of the Cholesky factor maps
the manifold of symmetric positive definite matrices into the product of copies of R and (0,00). A
similar result holds for the reduced-rank Cholesky decomposition I, (Neuman et al., 2023).
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6.1.1 Theory for Bias Correction

We first give results for the case of combined market-level data and microdata. We
let x; = (pt, &, T4, e) and let M denote the o-algebra generated by xi,...,x,. Let
V = Var(Z,&,(70)) be the dim(z) x dim(z) covariance matrix of the aggregate moments
at the true parameters, and let V; = Var (my|x;) be the dim(m) x dim(m) covariance

matrix of the micro moments for market ¢ conditional on y;. Let

H=GV'G+> MrV;) "M, (30)

t=1

where rq,...,r, are defined in Assumption 1 below, and let h = E[/%:t(%)] ~G'VIK,
where K = E[ky(70) Zi&i ()] is dim(z) x 1, G = E[Z,&,(70)] is dim(z) x dim(y), and
My = (7o) is dim(m) x dim(vy). Here V and h are deterministic whereas Vi,...,V;

and H are M-measurable random matrices. Let N be a neighborhood of ~y.

Assumption 1. Let the following hold:

(i) ke(-), mu(+), and Z,&(+) are twice continuously differentiable in v on N (almost
surely), and elements of the functions and their first and second derivatives are
uniformly (for v € N) bounded by a random variable D; with finite fourth
moment;

(ii) E[||mg|*T°|M] < C (almost surely) for some 0 < §,C < oc;

(iii) V is positive definite and Apin(V1), -5 Amin (V2 ); Amin (H) > € (almost surely)
for some € > 0;
(iv) T/Ny = 1 € (0,00) for 1 <t < 7.

Assumption 1(i)-(iii) are standard smoothness, moment, and rank conditions, re-
spectively. Assumption 1(iv) treats the sample size T' of the aggregate data and the
sample sizes of the microdata as comparable. This is designed to give a meaningful
approximation to common empirical scenarios where 7' is in the high tens or hun-
dreds and [V; is in the hundreds or thousands for each market (e.g., Petrin (2002) and
Grieco et al. (2024)).

The next result shows that the bias-corrected estimator . from (10) is asymptot-
ically centered at the true counterfactual ko = E[k;(7)] and its asymptotic variance

is independent of ¥, 0, and é. Because the effect of market-level variables in markets

33



for which there is microdata persists in the limit, we use the notion of stable con-
vergence. We say a sequence of random variables Zr converges in distribution to Z
(M-stably) if limy_,o Pr(Zr < 2, A) = Pr(Z < z, A) for all continuity points z of
the distribution of Z and all M-measurable events A. Convergence in distribution is

a special case corresponding to replacing M with the trivial o-algebra {0, Q}.

Proposition 1. Let Assumption 1 hold and 4 = v + 0,(T~Y*). Then /T (k. — ko)
converges in distribution (M-stably) as T — oo to a mized Gaussian random variable

with mean zero and M-measurable variance

Ve = Var (ki(v0)) + W H 'h — K'V'K. (31)

The (random) asymptotic variance Vj,. can easily be estimated using Vbc in equa-
tion (15). Standard errors s.e.(Ape) = \/ Vie/T are consistent under Assumption 1 and

valid inference can be performed based on t-statistics (hp. — Ko)/s.e.(Rpe) using the
standard N (0, 1) critical values.

Remark 8. Proposition 1 requires || — 7ol = 0,(T/*), which is a standard condi-
tion used in asymptotic theory for plug-in estimators (e.g., Newey, 1994, Assumption
5.1(ii)). Of course, asymptotics are only useful insofar as they deliver accurate approx-
imations to the finite-sample distribution of k. encountered in practice. In practical
terms, in any finite sample, this condition requires that 4 is within a vicinity of ~q
that is roughly double the order of sampling uncertainty. Indeed, the simulations
reported in Section 4 show that 4. has negligible bias up to moderate amounts of
mismeasurement of é (which translates to a range of |5 — 7l|) for a fixed sample
size T'. We also note that ¥ = ’y(é, €), where 0 is estimated on the choice data and é
can be computed using fine tuning on the same choice data. For these reasons, it is
plausible to adopt an asymptotic framework in which 4 approaches v, as the sample

size T increases.

We next provide a sense in which . is efficient. The proof of Proposition 1 shows
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that & belongs to the class I of estimators & of kg that satisfy

VT (i — ko) ! ET: (kt Yo) — Ko — C tht(70)>
VTS (e m0) +op(1), (32
t=1
where ¢ and dy, ..., d, are any M-measurable random vectors that satisfy
Elki(v0)] — G'e — ZMdt =0, (33)

(almost surely). For instance, similar arguments as in the proof of Proposition 1
show that any # obtained by plugging-in any 4 = v + 0,(T~'/4) into (10) for some
arbitrary weights ¢ and ch, . ,JT converging to ¢ and dy, . .., d, belongs to this class.
Condition (33) typically ensures that such an estimator satisfies (32) uniformly for
v local to vy. In general, there are many different weights ¢ and ch, e ,cZT whose
probability limits ¢ and dy, ..., d, will correspond to different (random) asymptotic
variances. The following result shows that &, has the smallest asymptotic variance

among this class of estimators of kq.

Proposition 2. Let Assumption 1 hold and 4 = o + 0,(T~Y4). Then &y, has the

smallest asymptotic variance among the class of estimators IC of ky.

An important practical take-away from Proposition 2 is that microdata should be
used, when available, to improve the efficiency of estimators of counterfactuals. Any
estimator that discards the microdata by implicitly setting dy,...,d, = 0 will have
an unnecessarily large variance (and hence standard errors).

Of course, in many scenarios microdata may not be available. Here we state a
simpler version of Proposition 1 tailored to this case. Recall that the bias-corrected
estimator in this case is given in (11), where ¢ is given in (13) with H = G'V'G. To
introduce the assumptions, let V and G be as above, and let H = G’V ~!G.

Assumption 2. Let the following hold:
(i) k(-) and Z,&,(-) are twice continuously differentiable in y on N (almost surely),

and the functions and all elements of their first and second derivatives are
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uniformly (for v € N) bounded by a random variable D, with finite fourth
moment;

(ii) V and H are positive definite.

The next result is a special case of Proposition 1 and is stated without proof.
Proposition 3. Let Assumption 3 hold and 4 = o + 0,(T~Y4). Then,
VT (Rpe — Ko) —+a N(0, Vi)
with Vie as in (31) with H = G'V1G.

The asymptotic variance can be easily estimated using the formula Vj. in (16).

Standard errors are then computed as \/\71,6 /T. These are consistent under the con-

ditions of Proposition 3.

6.1.2 Theory for LM,

We now present a result that provides a formal sense in which the diagnostic LM,
in (17) behaves like ||[v/T(% — 70)||? as the sample size grows large. We first state the
result then discuss its implications. In what follows, we abbreviate “with probability
approaching one” to “wpal.” Recall H from (30) and let Ay (H) denote its smallest

singular value, which is uniformly bounded away from zero by Assumption 1(iii).

Proposition 4. Let Assumption 1 hold and let 4 = o + 0,(1). Fiz any sequence
Cr 1 oo and any € > 0. Then wpal, we have

14+ N 142
¢ <\/ LMl — EOT> S ||H1/2(ﬁ(’7—’70))|| S 1_'_: (\/ LMl +ECT> .

1+ 2¢

In particular, wpal we have that LM, < C% implies

. 1+ QE)CT
VTG — )| < 1220
VTG =l < S
Moreover, if 4 = o + 0,(Cr/V/T), then wpal we have
LM, < (1+ €)*C2.

36



Proposition 4 shows LM, behaves like |[v/T'(5 — 70)||. With Cp = o(T"/*), wpal
we have that LM, < C% implies ||¥ — 7o < constant x Cp/v/T = o(T~/4).

The proof of Proposition 4 shows that the “wpal” qualifier depends on whether a
Xfiim(w) random variable is less than €2C2. With e = 1, say, this suggests taking C% to
be at least as large as the 95th or 99th percentile of the thlim(w) distribution. To check
a convergence rate of \/W , for instance, one could use C% = Xﬁim(’y),o‘95 logT'.

6.2 Case 2: Individual-Level Price Variation and Product

Fixed Effects

We again let I' denote the set of all values of (0, e) as 0 varies over the parameter
space © and e varies over all J X r matrices with linearly independent rows, assume
eg and e are J X r with linearly independent rows, and that I' is convex and open.
This is true for the v(6, e) given in Example 3, for which I' is the product of copies
of R and (0, 00) and is therefore convex and open (see footnote 17). In Section 3, the
counterfactual function k; and choice probabilities o; depended on (6, ¢) only through

the value of (6, e). We therefore treat k; and o; as random functions on I'.

6.2.1 Theory for Bias Correction

We now derive the theoretical properties of the bias-corrected estimator . from (23).
We first outline some standard smoothness, moment, and rank assumptions. In what
follows, we use a dot (as above) and double dot to denote first and second derivatives
with respect to v. Let H = E[6;(70)'Vi(70) '4(70)] and N be a neighborhood of ~.

Assumption 3. Let the following hold:

(i) k;(-) and oy(+) are twice continuously differentiable in v on N (almost surely),
and all elements of the functions and their first and second derivatives are
uniformly (for v € N) bounded by a random variable D; with finite second
moment;

(i) 64(:)'V;(-)7"' is continuously differentiable (almost surely) and all elements of
the function and its derivative are uniformly (for v € N) bounded by a random
variable D; with finite higher-than-second moment;

(iii) H is positive definite.
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Let ko = Elki(7)] denote the true value of the counterfactual. The following
result shows that the asymptotic distribution of &y, is centered at kg and its variance

is independent of 7, 9, and é.
Proposition 5. Let Assumption 3 hold and 4 = o + 0,(n~'/*). Then

\/ﬁ(,%bc - I{O) _>d N(O7 %c)a
as n — oo, where

Vie = Var (ki(v0)) + Elki(70)] H ™ "E[ki(70)]- (34)

The asymptotic variance V. can be easily estimated using f/},c in (25). Standard

errors are then computed as \/Vbc /n. These are consistent under the conditions of
Proposition 5. We note that, as before, Proposition 5 requires that 4 be in a vicinity

of 79, and refer the reader to Remark 8 for a discussion.

6.2.2 Theory for LM,

The following result is analogous to Proposition 4 and shows LM; behaves like

Iv/n (5 = )l-

Proposition 6. Let Assumption 3 hold and let 4 = vy + 0,(1). Fiz any sequence
C, T oo and any € > 0. Then wpal, we have

1te 1/2 A 14 2¢
o (VIM = cC,) < 1P (Va(y = o)) < T (VIM: + <)

In particular, wpal we have that LM, < C? implies

(1+2¢)C,

vy =)l < Sl

Moreover, if ¥ = o + 0,(Cy/+/n), then wpal we have

LM1 S (1 + E)QCZ.
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The implications of Proposition 6 are similar to before. In particular, for C, =
o(n/*), we have wpal that LM; < C? implies ||§ — 7o|| < constant x C,,//n =
o(n='/*). The proof of Proposition 6 shows that the “wpal” qualifier depends on
whether a Xﬁim(’y) random variable is less than €2C?. To check a convergence rate of
v/(logn)/n, for instance, one could use something like C? = Xaim().095 108 7.

With some additional structure, we can also use LM, to deduce a similar bound on
the proxies €. To introduce the assumptions, let 6, and e, be such that (6., e.) = 7o.
We do not require that 6, and e, are the true structural parameters and attributes,
only that they induce 7. Let Gy = %;’é)/, G, = %va’(?)l, Gy = %9’6*)/, and G, =
%C,(e;))' (these are well defined under Assumption 4 below). Also let C(Gy) denote
the column span of Gy and M = I — H'/2Gl)(GyHG,)"'GyH'/? denote the projection
onto C(Gg)*.

Assumption 4. Let the following hold:
(i) 0 —p 0, and € —, e, with v9 = (0., €.);
(ii) (0, e) is continuously differentiable in both its arguments at (6., e.) and Gy has
full row rank;
(iii) 0 satisfies the first-order condition 0 = (S and there exists a constant C' such
that [|0 — 6,]| < C||é — e.|| wpal;
(iv) MH'Y?G" has full rank.

Let omin(MHY2G") denote the smallest singular value of the matrix M HY2G".
Note this is positive by Assumption 4(iv).

Proposition 7. Let Assumptions 3 and 4 bold hold. Fix any sequence C, 1T co and
any € > 0. Then wpal, we have

1+ 3e
1+ €

(VI —<C,) < |MH"?C/u(vec(e — c.))] < 1113;

(\/W + e(]n) )

In particular, wpal we have that LM < C? implies

(14 2¢)C,

IVin(vee(e = el < =gy

¢

The proof of Proposition 6 shows that the “wpal” qualifier depends on whether a
Xzank(ary Tandom variable is less than €Cr.. With e = 1, say, this suggests taking Cy.

to be at least as large as the 95th or 99th percentile of the Xfank( M) distribution.
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7 Conclusion

In this paper, we develop a toolkit to correct bias and perform valid inference on
counterfactuals when the product attributes used in demand estimation may only
imperfectly capture the latent attributes that drive substitution. A leading case is
when consumer choice is driven by difficult-to-quantify characteristics and unstruc-
tured data, such as product images, descriptions, review text, or consumer surveys,
are converted into numerical variables using ML methods. As e-commerce continues
to expand and such data play an increasingly central role in driving consumer choices,
the need to incorporate these sources into demand estimation will only grow. In ad-
dition, our methods may be applied as simple post-estimation robustness checks even
with standard numeric attributes when mismeasurement is a concern. All our meth-
ods require minimal additional computation once model parameters are estimated

and can be easily integrated in the canonical demand estimation workflow.
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A  Proofs

A.1 Proofs for Section 6.1

Proof of Proposition 1. We have 4 € N wpal by the assumed consistency of 4. By

Assumption 1(i), wpal we may take a mean value expansion around 7y, to obtain

VT (R — ko) = LT > k(o) = ko — ¢ Ziki(r0) + VT Y dy (my — m(70))
+ LT Z ((é - C>/Ztgt(70) + Z(Czs —ds) (ms — ms(%)))

T T
1 . NI S .
+=> (ki(fy)’ —dZ&(7) = Y d;ms(7)> (5 = 0)
s=1
=Ty +Tor+ T3,

where 7 is in the segment between 4 and ,, and
c=V Y {K+GH'h), dy=rV) '"MH*h, t=1,...,7. (35)

Note that ¢ and dy, ..., d, are well defined by virtue of Assumption 1(iii).

For T; r, define the (dim(z)+1) x 1 random vector ¢; = (k:(70) — Ko. tht(fyo)). By
Theorem 2 of Hahn et al. (2022) (noting Assumptions 1(i)(ii) and independence within
and across markets are sufficient for their integrability and dependence conditions)

and Assumption 1(iv), for any M-measurable random vectors dy, ..., d,, we have

\/LT Zthl Ct ey ZA
S dVT (g — my(70)) (Yoo rediVidy) 2 Zy

M-stably, where the random vector Z 4 and random variable 7, are jointly normally
distributed and independent with mean zero, Var(Z,) = Var(¢;), and Var(Zy,) = 1.
Moreover, (Z4, Zys) are independent of any M-measurable random variable. Hence,
the asymptotic distribution of 7; 7 is mixed Gaussian with mean zero and random
variance

Var (ki(70)) + Ve — 2 K + Z rd, Vid,.

t=1
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Substituting the above formulas for ¢ and dy, ..., d, gives the form of the variance in
display (31). It remains to show that 757 and T3 1 are asymptotically negligible.

For term Tbr, first recall the expressions for h and H in (12). Note that by
Assumption 1(i)(ii) and consistency of 4, we can deduce by standard arguments (e.g.,
Lemma 2.4 of Newey and McFadden (1994)) that k —, E[k(y0)], K =, K, G —, G,
and V —, V. Hence, h —, h by Assumption 1(iii) and Slutsky’s theorem. Note
that for each 1 <t < 7, the m;; are iid conditional on M. It follows by Lemma 1 of
Andrews (2005) and Assumption 1(ii)(iv) that V; —, 7 V;. Hence, V; ™' —, (Vi)™
for 1 <t < 7 by Assumption 1(iii). Finally, Assumption 1(i) implies M, —, M, for
1 <t < 7. Hence, FI—)IDHandso H1 —, H™', ¢ —, ¢, and d, —,dfor 1<t <r
by Assumption 1(iii) and Slutsky’s theorem.

Now write

. T T .
Tor = (¢— C),L Z Zi&i(v0) + Z vT (di — di)'/ Ni (1 — m4(70))
= Tora+Torp.

Term 151, —, 0 because ¢ —, ¢ and \/LT ST ZiEi(0) = O,(1) by Assumption 1(i).
Similarly, Thrp —p 0 because \/T/N, — r, € (0,00) by Assumption 1(iv), d; —,
d, and +/N;(m; — my(0)) converges in distribution M-stably to a mixed normal
limit with mean zero and variance V; (by Assumption 1(ii)) and is therefore tight by
Assumption 1(ii).

For term 75, we first let my () denote the I-th element of m, (), and let py(7)
denote the [-th element of Ztét(y). Similarly, we let ¢ and dy denote the I-th elements

of ¢ and d;. Then we may write

T 1m z T 1m m
1 N
Tzr = —= Z k’t Z Cpu(y Z Z dgmng (Y / (¥ —70)-
VT 5 = —
By construction, ¢ and di, ... ,CZT satisfy the in-sample orthogonality condition

k—G'e=> Md, =0, (36)
wpal. By Assumption 1(i) we may take a second mean-value expansion, this time of
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4 around %, to arrive at

1 T ] dim(z) 7 dim(m) A
Tsr = ﬁ; k() — 2 apu(y) — 2 2 darng ()" | (¥ = 0)
1 T . dim(z) 7 dim(m) .
+ TV =AY - Sl k) = D apuy) - S darina(3) | | T4 - 0)
t=1 =1 s=1 I=1

=:T31a+ 1310,
wpal, where ¥ is in the segment between 4 and 7, k,(v) = 682%9/)7 pu(y) = 3;%1’(77)7

. 2
and 1y (y) = 867—5@(7).

We have

Ty — (k: -y M;cg) VT(5 — 7) = 0
s=1

wpal by the in-sample orthogonality condition (36).

To show T34 —, 0, in view of the condition 4 = o + 0,(T~4), it is enough
to show that the central term in parentheses is O,(1). To this end, standard argu-
ments (e.g., Lemma 2.4 of Newey and McFadden (1994)) using Assumption 1(i) and
consistency of 4 yield %ZtT:l k(%) —, E[ki(70)] and %ZtT:l pu(¥) —p Elpu(yo)],
both of which are finite. It also follows by the fact that Jt —p dy for 1 <t < 7,
Assumption 1(i), and consistency of 4 that dslmsl(ﬁ) —p dgmig () for 1 < s <7
and 1 < < L. Finally, Assumption 1(i)-(iii) implies ¢ and dy, ..., d; are tight. O

Proof of Proposition 2. Arguing as in the proof of Proposition 1, the asymptotic dis-
tribution of any estimator of the form (32) is mixed Gaussian with mean zero and
variance .
Var (ki(70)) + Ve — 2d K + Z rod, Vidy.
t=1
Conditioning on M, we may minimize this expression with respect to the vectors ¢ and
dy,...,d; subject to (33) to obtain the weights ¢ and dy, ..., d, in (35). Substituting

into the above display yields the minimum variance V. given in (31). O

Before proving Proposition 4, we first state and prove a lemma.
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Lemma 1. Let Assumption 1 hold and let 4 = o + 0,(1). Then
VTS = Zp + 0y(1) + (H + 0,(1)) (VT (5 = %)),

where Zp = CJ’V”\/L,f ST Z(0) + ST M (r Vi) TINT (my(y0) — 1) converges
in distribution (M-stably) to a mized Gaussian random variable with mean zero and

M-measurable variance H.

Proof of Lemma 1. By definition of S, we have

N |
VTS =G'v1

+
§ >
Fﬁ<‘ 4
3
3
§
|
3
>
n
g
N
+
o3
|
_|_
o3
|
+
=
=

where G —, G, M, —p My for 1 <t <7, V-1 —, V71, and V! —, (1 V)7t for
1 <t <7 (all by the proof of Proposition 1).

For T 5 and T5r, we have by the proof of Proposition 1 that % Zthl tht(%)
and /Ny(mqy(70) —my), 1 <t <7, are all O,(1). It follows by Assumption 1(iv) that
Tyr+Tor = Zr+o0,(1). Hence, by similar arguments to the proof of Proposition 1 we
may invoke Theorem 2 of Hahn et al. (2022) to conclude that Zr converges M-stably
to a mixed Gaussian limit with mean zero and variance H.

For T 7 and T 7, a mean-value expansion in 4 around 7, yields
1 T ) T
Tsr = G'v! (T Z tht(’?)) \/T(’AV — %), Tur = Z Mtvflmt(’?)/ﬁ(’? — %)
t=1 t=1

for 4 in the segment between 4 and . It follows by Assumption 1(i) and standard
arguments that %ZL Z&(7) —p G and 1y(7) =, My, 1 <t < 7. Hence, Tsr +
Ty = (H + 0p(D)VT (5 = 70)- O

Proof of Proposition 4. The proof of Proposition 1 shows that H —, H. Combined
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with Lemma 1 and the triangle inequality, we have

> VLM, > |[(H? + 0,(1))(VT(5 = 20))| = [I(H™Y? + 0,(1))(Zr + 0,(1)].
As [|[(HY2 + 0,(1))(Zr + 0p(1)) > —=a X3im(y) Dy the proof of Lemma 1, we have
I(H Y2+ 0,(1))(Zr + 0,(1))]| < Cr

wpal. Moreover, we have that

1+ 2e¢
1+¢€

1+e¢

I HAVT =0 2 140, VT G=0) | 2 75

12 (VT (G=0))

wpal. The first result follows by combining the above three displays and rearranging.

The second and third results are implications of the first. O

A.2 Proofs for Section 6.2

Proof of Proposition 5. Let ¢, = (E[k;(v0)]) H *¢:(70) Vi(70) ™! denote the population
counterpart of ¢;. We have ¥ € N wpal by consistency of 4. Hence, wpal, we may

take a mean value expansion around 7, to obtain

e — o) = % 2 ki(70) — #io + cA(di — 7:(70)

n

L (6 = e (di — au(0))

1 - NPT
+—=> (ki(7>, - dw(v)) (% = 70)
1
= Tl,n + T2,n + T3,na

where 7 is in the segment between 4 and 7. This expansion is valid by Assump-
tion 3(i). Term T3, is asymptotically N (0, Vj.). It remains to show that T3, and T3,
are both asymptotically negligible.

49



For T, first define the 1 x dim(~y) vectors
a=KH", a=E[k(o)H ",

where k£ = 15" k(7). Also define the dim(y) x J random element b;(y) =
a;(7)'Vi(v)7t, and let e; = d; — 0i(70), which is J x 1. Then we may write

By Assumptions 3(i)(ii) and consistency of 4, it follows by standard arguments
(e.g., Newey and McFadden, 1994, Lemma 2.4) that k —, E[k;(y0)] and H —, H.
Hence, @ —, a by Assumption 3(iii).

To show T5,., —, 0, first note that a = O,(1) and E[b;(y)e;] = 0. Consider
the empirical process v,(y) = \/iﬁ > bi(y)e; defined for v € N. For v,7, € N,
we have by a mean-value expansion that b;(y1)e; — b;j(72)e; = (71 — 72)'bi(7)e; for 4
in the segment between 7; and 7, (with possibly different values for each element),
where b;(7)e; = 6%(61-(&)62-)’ . This expansion is valid in view of Assumption 3(ii).
The elements of e; are bounded by +1 and the elements of b;(7y) are uniformly (for
v € N) bounded by some random variable with finite second moment, again by
Assumption 3(ii). Hence, ||b;i(71)e; — bi(y2)e:|| < Bi|lya — 72|| for 71,72 € N, for some
random variable B; with finite second moment. Thus, {b;(y)e; : v € N} is a type-
IT class of Andrews (1994b). It follows by Theorems 1 and 2 of Andrews (1994b)
(using Assumption 3(ii) to verify the moment condition on the envelope function)
that v, (+) is stochastically equicontinuous. Also note by the Lipschitz condition the
pseudometric corresponding to this process is dominated by the Euclidean metric.
Hence, by consistency of 4 we have \/iﬁ Yo (0i(7) = bi(70))ei — 0.

To show Ty, —p 0, first note @ —, a. Moreover, E[||b;(70)e;]|?] < oo by Assump-
tion 3(ii) and E[b;(y0)e;] = 0, so \/iﬁ Yo bi(0)e; = Op(1) by Chebyshev’s inequality.

For term T3 ,,, we first write

T3, = % ; (ifi(”?)/ - ; éz’jf'fij(’?)/> (% = 7)),
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where ¢; = (¢1,...,¢y), and 6,(y) = %34'7(7). Note by construction that ¢; satisfies

the in-sample orthogonality condition

—Zk ) —6:(5)¢ = 0. (37)

A second mean-value expansion, this time of 4 around 74, yields

o= Z (i(3) — &:) (3= )

+nt (5 —4) <% > (i%m -3 @ﬁM))) n'’*(§ = )

i=1
= T3,n,a + T3,n,ba

92k;(7)
Ovoy

have T5,,, = 0 by the in-sample orthogonality condition (37).

82045
and ;;(y) = 87—53). We

where 7 is in the segment between 4 and 7, k;(y) =

To show T3, —, 0, in view of the condition 4 = 7o + 0,(n /%), it is enough to
show that the central term in parentheses is O,(1). To this end, standard arguments
(e.g., Newey and McFadden 1994, Lemma 2.4) using Assumption 3(i) and consistency
of 4 yield £ 3% | k:(%) —p E[ki(70)], which is finite. We may similarly deduce by the
fact that & —, a and Assumption 3(i)-(ili) that L >""  ¢;6,;(%) — Elci;di;(70)],
which is finite, for j =1,... J. ]
Proof of Proposition 6. Analogous to the proof of Proposition 4, using Lemma 2 be-

low in place of Lemma 1. O

Lemma 2. Let Assumption 3 hold and let ¥ = vy + 0,(1). Then
VnS =7, + 0p(1) = (H + 0,(1))(v/n(¥ — 7)),

where Z, := =371 6i(70)'Vi(70) " (di — 03(70)) —a N (0, H).

Proof of Lemma 2. First note that since ijo gij(7) = 0 for all v € I', we may write

n J n J
. 1 dij — 0ij(70) 0@7(7 . 1 aii(70) Uzg ). .
= — — O'i' /7/
\/EZZIJZO 7i;(7) \/ﬁzz 03 (7 i)

=1 7=0

= Tl,n + T2,n-
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For T' ,, we may rewrite this term using the notation from the proof of Proposi-

tion b as
1 n 1 n
T, =— bi(vo)e:i + —= (0:(%) = bi(y0)) €
= Tl,n,a + Tl,n,b

where b;(y) = 6:i(7)'Vi(y)™! and e; = d; — 0i(7). The summands in Tj,, have
mean zero and variance H, which is finite and non-singular by Assumption 3(iii).
Hence, T1,. —a N(0,H). The proof of Proposition 5 shows that the empirical
process v, (7y) = \/Lﬁ S bi(y)e; defined for v € N, a suitable neighborhood of 7y, is
stochastically equicontinuous under Assumption 3(ii). Hence, T}, — 0.

For T} ,,, a mean-value expansion in v, around % yields
O"L UZ A~
- (133 ) i)
O-Z
=1 7=0 J

for 4 in the segment between 7, and 4 (with possibly different values for each element).

This expansion is valid in view of Assumption 3(i). For the term in parentheses, note
0:; (%) .
; ZZ Rt ” foz ().
i=1 j=0 U”
j=

Standard arguments (e.g., Lemma 2.4 of Newey and McFadden (1994)) then yield
that = 3" 6,(5)'Vi(¥)~6:(7) —p H under Assumption 3(i)(ii). O

Proof of Proposition 7. First note that Assumption 4(i)(ii) implies 4 —, ~vo. More-
over, H —, H by the proof of Proposition 5, H is positive definite by Assump-
tion 3(iii), and Gy —, Gy by Assumption 4(i)(ii). It follows by Assumption 4(ii) that
M =1 — H'?GY(GeHG,)'GyH? exists wpal and M —, M. Now by Assump-

tion 4(iii) and Lemma 2,
VnS = vnMH Y28 = MHY(Z, + 0,(1)) — MHY(H + 0,(1))(v/n(% — %)),
where M = I — H'/2Gl)(GyHG,) ' GoH'?. Hence,

VS = (M + 0,(V)(HV?Z, + 0,(1)) = (MH"? + 0,(1)) (vn(§ — 70))-
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A mean-value expansion of 4 around (6., e,) yields

~

V(¥ =) = (G + 0,(1))v/n(0 = 6.) + (G + 0p(1))V/n(vec(é — e.)).

Since M H'/?GYy = 0, we have by Assumption 4(iii)(iv) that

I(MHY? + 0,(1))(Gf + 0,(1) V(0 — 0.)] <

— Vivec( = )|

wpal. Moreover,

1+ 2¢

TS IMH G a(vec(e — e)]

< |(MHY2 + 0,(1))(G. + 0p(1)W(vee(® — e.))]|
< M H G, i(vec( — e.)]

wpal. We also have ||[MH?Z,||* =4 X2, by Lemma 2, which implies that the
inequality ||(M + 0,(1))(H~Y2Z, + 0,(1))|| < €C,, holds wpal. Hence, wpal,

14 3¢
1+

HMHl/QG’ Vn(vec(é — e,))|| + €C,

> LM, > 1:36 |MHY?G/n(vec(é — e.))|| — eC.
€

The first result follows by rearranging. The second is an immediate implication. [

B Additional Results for Section 5

Figures 5 and 6 plot the LM, and LM, diagnostics, respectively, for each specification.

C Reparameterization for Micro BLP

Consider Example 2. We partition 5; = (8, Be) and II = [II; I, II,], and write the

utilities as:

wije = B i+ Bl e5 — ipje+ (Zje, pje) [z Tplya + €Ty +7'Gije + e +€ije, J € T
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Figure 5: LM, diagnostic in empirical application
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Note: Each bar shows the value of the LM statistic for the corresponding specification.

Figure 6: LM, diagnostic in empirical application
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Note: Each bar shows the value of the LM, statistic for the corresponding specification.
The horizontal segments show the associated critical values.
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Suppose a; ~ N(@aai), ﬁm ~ N(B:ia Za‘:)a ﬂe,z‘ ~ N(Bm Ee), and o, 55:,1‘ and 5@1‘ are
independent. Then,

0= (64,JQ,B@Be,ﬂ,U(Hf),v(ﬂp),v(ﬂe),l(ﬁlf), Z(Ze)) ,

where we use the same notation v and [ as for Examples 1 and 3.'® Note that e; only
enters via 3, ;e; and € ll.y;. As before, collecting 3 ;e; across products, we have

eBei ~ N(ef,eX.€'), where eX.e’ has rank r < J because e is J x r. Hence,

V(8. €) = (@, 04, Bz, €fe, m, v(I1z), v(IL,), v(ell,), 1(Xz), I (eXee'))

with [, as in Examples 1 and 3.

18 As with Example 1, if ¥; and/or X, are diagonal, then we replace [(3¥z) and/or I(3.) with
vectors containing their diagonal entries.
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