
From Unstructured Data to Demand

Counterfactuals: Theory and Practice∗

Timothy Christensen† Giovanni Compiani‡

January 16, 2026

Abstract

Empirical models of demand for differentiated products rely on low-dimensional
product representations to capture substitution patterns. These representations
are increasingly proxied by applying ML methods to high-dimensional, unstruc-
tured data, including product descriptions and images. When proxies fail to
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workflows will deliver biased counterfactuals and invalid inference. We de-
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simple formulas for standard errors, and accommodates data-dependent prox-
ies, including embeddings from fine-tuned ML models. It can also be used with
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1 Introduction

Many questions in economics and other social sciences require researchers to estimate

demand for differentiated products. A common strategy is to estimate discrete-choice

models which specify the utility of a product as a function of the product’s price and

other observable attributes, often allowing for rich types of consumer heterogeneity

(Berry et al. (1995, 2004), henceforth BLP). Among other applications, this approach

has been used to study the impact of horizontal mergers (Nevo, 2000), new product

launches (Hausman, 1994; Petrin, 2002), trade policy (Goldberg, 1995), school choice

(Bayer et al., 2007; Neilson, 2017), two-sided markets (Fan, 2013; Lee, 2013), and the

evolution of markups over time (Grieco et al., 2024).

The success of demand models in predicting (counterfactual) quantities of interest

(counterfactuals hereafter) hinges on their ability to capture substitution patterns.

Doing so requires using product attributes as model inputs that correctly reflect the

underlying dimensions of differentiation. Choosing the correct attributes to use as

model inputs poses a fundamental measurement challenge (Berry and Haile, 2021).

First, consumer choices are often driven by hard-to-quantify characteristics, such as

visual design, user friendliness, or style. In these cases, a growing literature shows

that product images, descriptions, and reviews contain valuable information to cap-

ture substitution patterns (Compiani et al., 2025; Han and Lee, 2025; Lee, 2025).

Consumer surveys may also provide measures of product differentiation (Magnolfi

et al., 2025). To use these high-dimensional, unstructured data in demand models,

researchers often transform them into lower-dimensional numerical variables, or em-

beddings, using machine learning (ML) methods. Second, even numeric attributes

could be mismeasured (e.g., Nevo, 2001; Allcott and Wozny, 2014), or could be high-

dimensional and collinear, requiring dimension-reduction (e.g., Backus et al., 2021).

In all of these cases, the variables used as inputs in the demand model are proxies

for the true attributes that drive consumer choices. It is essential that these proxies

adequately capture the true dimensions of differentiation: poor proxies can lead to

biased estimates of demand model parameters and, in turn, biased counterfactuals.

In this paper, we propose a simple, post-estimation bias correction for counter-

factuals. We take the naive estimator that treats the proxies as if they were the

true dimensions of differentiation (as is implicitly done and reported in practice) and

add a correction term designed to achieve two goals. First, it is chosen to mitigate
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the bias in counterfactuals arising from mismeasurement of the true dimensions of

differentiation. Second, it is chosen so that the bias-corrected estimator is efficient,

meaning that it has the lowest possible asymptotic variance among a broad class of

estimators. We also provide simple formulas for standard errors, making valid in-

ference easy. In addition, we show how two simple diagnostics can be used to help

assess the adequacy of different proxies in capturing substitution. Together, these

diagnostics help guide the choice of how many and which proxies/attributes should

be included in the model—practical questions that researchers need to answer in any

instance. Answering these questions is further complicated by the fact that, unlike

standard prediction problems, the counterfactual is not observed in the data.

We develop the bias corrections and diagnostics for two widely-used empirical

frameworks. The first follows Berry et al. (1995, 2004): prices vary across markets,

instrumental variables are used to address price endogeneity, and market-level data

may be supplemented with individual choice data for a subset of markets. Many

papers in industrial organization (IO) and fields using IO tools fit in this category.

The second framework consists of models estimated on individual choice data with

product-level fixed effects, which are very common in marketing applications (see

Dubé and Rossi (2019) for a review). While we illustrate our approach for workhorse

specifications (e.g., mixed logit with normal random coefficients), the method does

not rely on specific parametric functional forms.

The bias corrections and diagnostics are computationally light and integrate easily

into the standard demand estimation workflow. The bias corrections take as inputs

the naive parameter estimates, which treat the proxies as the true dimensions of

differentiation, and require neither bootstrapping nor any optimization. Similarly, the

diagnostics are Lagrange Multiplier (LM) statistics evaluated at the naive estimates.

All bias corrections, standard errors, and diagnostics admit closed-form expressions.

These involve first derivatives of choice probabilities and counterfactuals, which are

easily computed using automatic differentiation.

The key insight underlying our approach is that mismeasurement of the true

dimensions of differentiation using proxies induces a form of model misspecification,

as distinct from a measurement error problem.1 We address this misspecification by

1In our setting, the relevant unit of observation is the market and/or individual level, whereas
mismeasurement occurs at the product level. By contrast, mismeasurement is at the observation
level in a standard measurement error problem. Misspecification and measurement error both cause
bias, but do so for different reasons and require different corrections.
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reparameterizing the model with a composite parameter that captures how proxies

interact with structural parameters to affect utilities. Different proxies correspond to

different values of the composite parameter. Framing the model in this way allows

us to target counterfactuals using standard two-step estimation methods, where the

first-step estimator corresponds to the composite parameter value pinned down by

the proxies and naive parameter estimates.

An advantage of this approach is that it allows us to correct bias while remaining

agnostic about the form of mismeasurement. This is particularly valuable because

proxies are often obtained via black-box ML models, making it difficult to justify

specific assumptions on the nature of mismeasurement. Importantly, the approach

accommodates proxies that depend on the choice data, such as when they are ob-

tained by fine tuning ML models on the same data that is used to estimate the

demand model. For instance, researchers may fine tune neural networks or LLMs to

obtain embeddings of product descriptions and images that better fit the observed

substitution patterns than those produced by off-the-shelf algorithms. Moreover, be-

cause we correct how proxies and structural parameters jointly affect utility rather

than the proxies themselves, our approach does not require practitioners to take a

stand on the units of the proxies and/or true dimensions of differentiation. This is

especially important for proxies for hard-to-quantify characteristics like visual design

or user friendliness that lack natural units of measurement.

Simulations confirm that the bias correction improves performance for a range of

levels of mismeasurement of the true dimensions of differentiation. Specifically, the

corrected estimator has lower bias and lower variance than the naive estimator across

all levels of mismeasurement. The bias correction leads to slightly higher variance

in the knife-edge case in which the proxies perfectly capture differentiation, but the

efficiency loss is small.2 Simulations also confirm that our diagnostics convey useful

information for selecting which proxies to use when estimating counterfactuals.

Finally, using the experimental data from Compiani et al. (2025), we show that

the bias correction materially improves the model’s ability to predict counterfactual

choices following product removals. To this end, we leverage the fact that the data

features both consumers’ first and second choices. We estimate model parameters

2The fact that there is an efficiency loss in this knife-edge case is to be expected: the naive ap-
proach maintains the assumption that the proxies are measured without error, whereas the corrected
estimator does not. What is surprising is that the efficiency loss is relatively small.
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on the first choice data alone, then compare how well the naive and bias-corrected

estimators predict second choices. The second-choice data provide a ground truth to

assess the effectiveness of our approach. The bias correction meaningfully improves

the model’s ability to predict a product’s closest substitute, improving the hit rate

from 40% to 70% for our preferred specification. Further, our diagnostics correctly

identify the set of proxies that perform best at the counterfactual prediction task,

indicating that they can be valuable tools for practitioners.

We emphasize that our approach is also helpful for practitioners using standard

numeric attributes. As noted above, mismeasurement may be a concern even in this

case, particularly when dimension-reduction methods are used to shrink the attribute

set. Our bias corrections provide a practical remedy. Further, the choice of which

attributes to include is generally ad hoc even with numeric attributes. Our diagnostics

help guide practitioners in making these decisions. Beyond mismeasurement concerns,

our approach yields easy-to-compute, efficient estimators of counterfactuals (even

when model parameters are estimated inefficiently) across many empirical settings,

including combined market-level and microdata (e.g., Petrin, 2002; Berry et al., 2004,

and many subsequent works). Our standard-error formulas also allow easy inference

without bootstrapping. To the best of our knowledge, these contributions are new.3

Our approach is related to double/debiased ML (DML), which has recently been

used in single-equation demand estimation with unstructured data (Bach et al., 2024).

Both aim to estimate a target parameter in the presence of nuisance parameters. In

our setting, the target is the counterfactual and the nuisance are both the latent

dimensions of differentiation, which are “estimated” using proxies, and the demand

model parameters.4 Standard DML methods typically require models for the nuisance

parameters and access to the data used to estimate them. In contrast, our approach

accommodates proxies that are the outputs of black-box ML models trained on data to

which the researcher might have limited to no access. To do so, we reparameterize the

model via a composite parameter and rely on standard two-step estimation methods,

3Grieco et al. (2025) study efficient estimation of model parameters in mixed logit models with
combined market-level and microdata. Our focus is instead on efficient estimation of counterfactuals.
For counterfactuals that depend on data moments in addition to model parameters (e.g., average
welfare and average price elasticity), efficient estimators of model parameters do not necessarily lead
to efficient estimators of counterfactuals (Brown and Newey, 1998; Ai and Chen, 2012).

4In contrast, Bach et al. (2024) treats the embeddings as perfect proxies for product attributes.
Correspondingly, it uses DML to correct the estimation of nuisance functions as for partially linear
regression, not to correct for mismeasurement of product attributes.
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including an orthogonalization step which shares similarities with DML.

A recent literature recognizes that naively treating ML-generated variables as data

leads to measurement-error bias and develops corrections for it. But as noted above,

the problem we study is one of model misspecification rather than measurement error,

since the unit of observation (markets and/or individuals) is different from the unit of

mismeasurement (products). Moreover, almost all strategies in this literature rely on

validation data linking ML-generated variables and their ground-truth values.5 In our

setting, however, the true dimensions of differentiation are latent and can at best be

only imperfectly proxied via survey data, rendering these methods inapplicable. One

exception is Battaglia et al. (2024) who develop analytical bias corrections without

validation data, but their approach is specific to linear regression.

The remainder of the paper is structured as follows. Section 2 presents our bias

corrections and diagnostics for BLP-type models, while Section 3 does the same for

models with individual-level choice data and product fixed effects. Each section first

presents the model, develops the bias corrections and diagnostics, and concludes

with a practitioner’s guide detailing the steps involved and giving practical recom-

mendations. Simulations and the empirical application are presented in Sections 4

and 5, respectively, with additional empirical results deferred to Appendix B. Sec-

tion 6 presents all theoretical results while all proofs are presented in Appendix A.

2 Case 1: Endogenous Prices

We first consider a setting where prices vary at the market level and identification is

achieved through instruments.

2.1 Model and Data

Following an established literature (Berry and Haile, 2014; Freyberger, 2015), we

assume that the researcher has data from a large number T of markets in which

(subsets of) J goods are sold.6 In addition to the outside option (denoted by 0), each

5See, e.g., Fong and Tyler (2021); Allon et al. (2023); Angelopoulos et al. (2023); Egami et al.
(2023); Zhang et al. (2023); Carlson and Dell (2025) and references therein. These works build on
an earlier literature on auxiliary data (Chen et al., 2005, 2008).

6For simplicity, we assume that J is fixed. It is straightforward to extend our approach to
asymptotic thought experiments where J grows slowly with the number of markets T .
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market t features products Jt ⊆ {1, . . . , J}, for which the researcher has access to

data on prices pt = (pjt)j∈Jt , exogenous product attributes xt = (xjt)j∈Jt , and market

shares st = (sjt)j∈Jt . Consumer choices are also driven by unobserved quality levels

ξt = (ξjt)j∈Jt . The model predicts market shares as a function of pt, xt, ξt, and a

parameter vector θ:

sjt = σj(pt, xt, ξt; θ), j ∈ Jt. (1)

Prices pt are endogenous and may be correlated with the unobservables ξt. To address

this, we rely on a vector of instrumental variables wt = (wjt)j∈Jt that satisfy

E[ξjt|zjt] = 0, j ∈ Jt, t = 1, . . . , T, (2)

where zjt ≡ (xjt, wjt). We also accommodate “micro BLP” settings (Berry et al.,

2004; Berry and Haile, 2024) where, in addition to the above, individual-level data

on choices and demographics are available in a subset of markets. The microdata

consists of choice indicators dit = (dijt)j∈Jt taking the value 1 if i chose j in market

t and 0 otherwise, and demographic variables yit that vary at the consumer level,

such as income, and/or ȳijt that vary at the product-consumer level, such as distance

between a household’s home and a school or a hospital. We assume the microdata is

available for a fixed set of markets which, without loss, we label t = 1, . . . , τ .7 We

treat the microdata within each market t as a repeated cross section of size Nt.

This model subsumes many empirical specifications used in the literature. We

provide two simple examples below to fix ideas.

Example 1 (BLP). The utility that individual i derives from good j in market t is

uijt = β′
ixjt − αipjt + ξjt + εijt, j ∈ Jt,

ui0t = εi0t,
(3)

where the εijt are iid type 1 extreme value random variables. Market shares are

σj(pt, ξt, xt; θ) =

∫
eβ

′xjt−αpjt+ξjt

1 +
∑

k∈Jt
eβ′xkt−αpkt+ξkt

dF (α, β; θ), j ∈ Jt, (4)

for some parametric distribution F .

7The case where microdata is present for all T markets is simpler and the associated derivations
are available upon request.
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Example 2 (Micro BLP). The utility is specified as:

uijt = β′
ixjt − αipjt + (xjt, pjt)

′Πyit + π′ȳijt + ξjt + εijt, j ∈ Jt,

ui0t = εi0t,
(5)

One can compute micro-moments using the following expression for individual choice

probabilities:

Pr(dijt = 1|yit, ȳit, pt, ξt, xt; θ)

=

∫
eβ

′xjt−αpjt+(xjt,pjt)
′Πyit+π′ȳijt+ξjt

1 +
∑

k∈Jt
eβ′xkt−αpkt+(xkt,pkt)′Πyit+π′ȳikt+ξkt

dF (α, β; θ). (6)

The expression for market shares is obtained by integrating (6) over the (known)

distribution of (yit, ȳit) for ȳit = (ȳijt)j∈Jt.

So far the model is standard. Our point of departure is to partition

xjt ≡ (x̄jt, ej),

where x̄jt is a vector of conventional observed product attributes, such as product size,

and ej is an r-vector of product attributes, such as visual design or user friendliness,

that are difficult to capture using standard numeric data. Accordingly, we treat

e = (e′j)
J
j=1 as known to the consumer but latent to the researcher. What is available

to the researcher are proxies ẽ = (ẽ′j)
J
j=1 for the true underlying e. Note that e does not

vary across markets, consistent with the fact that difficult-to-quantify characteristics

such as visual design or user friendliness are often fixed product characteristics.

In the leading case we study, the econometrician observes unstructured data Uj

and computes a low-dimensional representation ẽj of Uj, often referred to as an em-

bedding, via ML methods. In this scenario, the embeddings ẽj act as proxies for the

true latent ej. To maximize generality, we stay agnostic on the form that Uj takes. It

could be text (product descriptions and reviews), images, audio/video components,

or a combination thereof (Compiani et al., 2025; Han and Lee, 2025), or consumer

preferences inferred from surveys (Magnolfi et al., 2025). Similarly, we are agnostic

on the ML method used to compute ẽj.

Unlike prior work, we wish to account for the fact that proxies ẽj are not the
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ground truth but rather are approximations to the true latent ej. Different ML

methods correspond to different approximations and produce different biases in down-

stream estimates of counterfactuals. Our first main goal is to develop estimators of

model parameters and counterfactuals that are immune to this bias. Another goal is

to shed light on what a “good” proxy might look like from the perspective of estima-

tion and inference on counterfactuals. This objective is fundamentally different from

the standard problem of choosing proxies for a prediction problem, since in our case

the counterfactual is not observed in the data.

Remark 1. While we focus on embeddings computed from unstructured data, our

approach may be used more generally to correct bias from mismeasurement of any

product attributes that do not vary across markets (e.g., the “mushiness” of cereal

hand-coded by Nevo (2001)). In these scenarios, x̄jt represents the attributes that are

not mismeasured and ẽj represents the proxies for the true latent attributes, ej.

2.2 Bias-Corrected Counterfactuals

We consider a broad class of counterfactuals that can be written as

κ = E[k(pt, ξt, x̄t, e; θ)], (7)

where the expectation is over the distribution of (pt, ξt, x̄t) across markets t. For

instance, κ might represent an average price elasticity, average equilibrium price or

consumer welfare measure (possibly after a counterfactual change on the supply side).

Expression (7) also subsumes counterfactuals for a specific market, such as the price

elasticity at a given (p, ξ, x̄). In this case, k is a deterministic function of θ and the

expectation becomes redundant. As we discuss below, κ could also represent certain

elements of θ, such as the average price coefficient.

Given the observed aggregate data and a candidate set of proxies ẽ, estimation

typically proceeds using GMM based on the moment8

1

T

T∑
t=1

Ztξ̂t(st, pt, x̄t, ẽ; θ),

8With slight abuse of notation, we now write σj as functions of x̄t and e, with the understanding

that σj depends on e only through (ej)j∈Jt
, and similarly for ξ̂t.
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where ξ̂t(st, pt, x̄t, e; θ) = (ξ̂j(st, pt, x̄t, e; θ))j∈Jt is defined implicitly via

sjt = σj(pt, ξ̂t, x̄t, e; θ), j ∈ Jt, (8)

and Zt is a dim(z)× |Jt| matrix whose columns contain zjt for j ∈ Jt. Here zjt may

be the original instruments in (2) as well as transformations thereof, such as when

sieves are used to approximate optimal instruments. When the researcher also has

microdata, the GMM criterion can be combined with a minimum-distance criterion

based on the micro moments (as in, e.g., Conlon and Gortmaker, 2025). Let m̄t =
1
Nt

∑Nt

i=1mit, where mit = m(yit, ȳit, dit) is a known function of demographic and

choice data for individual i in market t. Letm(pt, ξt, x̄t, e; θ) denote the model-implied

expectation of mit conditional on the market-level data:

m(pt, ξt, x̄t, e; θ) = E[mit|pt, ξt, x̄t, e].

Thus

m̄t −m(pt, ξ̂t(st, pt, x̄t, ẽ; θ), x̄t, ẽ; θ), t = 1, . . . , τ,

give an additional set of micro-moments to match when estimating θ.

Given an estimate θ̂ of θ, the counterfactual κ is usually estimated as

κ̂ =
1

T

T∑
t=1

k(pt, ξ̂t(st, pt, x̄t, ẽ; θ̂), ẽ; θ̂). (9)

We call this the naive estimator of κ since it does not account for the fact that the

proxies ẽ might differ from the true latent attributes e. This mismeasurement has the

potential to affect the estimator via two channels: (i) directly, since ẽ is an argument

of k, and (ii) indirectly through both θ̂ and ξ̂t.

We now introduce a bias-correction procedure that is designed to mitigate the

bias from using ẽ in place of the true e. We begin by restricting attention to models

in which the attributes e and model parameters θ enter choice probabilities (4) via a

lower-dimensional composite parameter

γ ≡ γ(θ, e).

Many models feature this property. We illustrate it in the BLP example.
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Example 1 (continued). We partition βi = (βx̄,i, βe,i) and write the utilities as:

uijt = β′
x̄,ix̄jt + β′

e,iej − αipjt + ξjt + εijt, j ∈ Jt.

Suppose αi ∼ N(ᾱ, σ2
α), βx̄,i ∼ N(β̄x̄,Σx̄), βe,i ∼ N(β̄e,Σe), and αi, βx̄,i and βe,i are

independent. Then,

θ =
(
ᾱ, σα, β̄x̄, β̄e, l(Σx̄), l(Σe)

)
,

where l(Σ) stacks the lower-triangular entries of the Cholesky factor of Σ into a

vector.9 Note that ej only enter via β′
e,iej. Collecting β′

e,iej across products, we have

eβe,i ∼ N(eβ̄e, eΣee
′), where eΣee

′ has rank r ≤ J because e is J × r. Hence,

γ(θ, e) =
(
ᾱ, σα, β̄x̄, eβ̄e, l(Σx̄), lr(eΣee

′)
)
,

where lr stacks the lower-triangular entries of the rank-r Cholesky factor of eΣee
′.10

For instance, when both x̄j and ej are scalars and J = 2, we have

γ(θ, e) =
(
ᾱ, σα, β̄x̄, e1β̄e, e2β̄e, σx̄, σe|e1|, σee2sign(e1)

)
,

where σx̄ and σe are the standard deviations of the random coefficients on x̄j and ej.

As can be seen from this example, parameters that do not interact with e are

left unchanged, as is the case for the average price coefficient ᾱ, for instance. For

the remaining components that interact with e, we expand the parameter space to

capture the effect of joint shifts in e (as, for instance, when ẽ is used in place of e)

and/or θ. A similar reparameterization for Example 2 is provided in Appendix C.

This reparameterization allows us to simplify notation as follows. First, we note

that the right-hand side of (8) depends on (θ, e) only via γ(θ, e). Thus we write

ξ̂jt(γ(θ, e)) = ξ̂j(st, pt, x̄t, e; θ) for j ∈ Jt (suppressing dependence on st, pt, x̄t) and

let ξ̂t(γ(θ, e)) = (ξ̂jt(γ(θ, e)))j∈Jt . We similarly restrict attention to counterfactuals

that depend on (θ, e) only via γ(θ, e) and write kt(γ(θ, e)) = k(pt, ξ̂t(γ(θ, e)), x̄t, e; θ).

This includes many counterfactuals of interest, such as elasticities with respect to

prices or x̄, equilibrium prices, and welfare changes associated with changes in prices

9If Σx̄ and/or Σe are diagonal, then we replace l(Σx̄) and/or l(Σe) with vectors containing their
diagonal entries.

10As eΣee
′ is J × J with rank r, its rank-r Cholesky factor is the unique J × r matrix L whose

above-diagonal entries are all zeros and whose diagonal entries are all positive, such that LL′ = eΣee
′.
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or x̄. It precludes quantifying the effect of changes in the latent attributes e or

measuring heterogeneity in preferences for e, but these are of little meaning when

e has no natural scale or interpretation. When microdata are also available, we

note that the choice probabilities in (6) depend on (θ, e) only via γ(θ, e) and write

mt(γ(θ, e)) = m(pt, ξ̂t(γ(θ, e)), x̄t, e; θ). Finally, we let γ̂ = γ(θ̂, ẽ) denote the value of

γ at the estimated structural parameters θ̂ using the candidate proxies ẽ.

With this notation, we can define the bias-corrected estimator

κ̂bc =
1

T

T∑
t=1

(
kt(γ̂)− ĉ′Ztξ̂t(γ̂)

)
+

τ∑
t=1

d̂′t
(
m̄t −mt(γ̂)

)
, (10)

where ĉ is a dim(z) × 1 vector of weights for the aggregate moments and d̂1, . . . , d̂τ

are dim(m) × 1 vectors of weights for the micro moments. Without microdata, the

bias-corrected estimator is simply

κ̂bc =
1

T

T∑
t=1

(
kt(γ̂)− ĉ′Ztξ̂t(γ̂)

)
. (11)

We give closed-form expressions for ĉ and d̂1, . . . , d̂τ below. The bias corrections are

easy to implement: they simply take the naive estimator 1
T

∑T
t=1 kt(γ̂) and add a

weighted average of the estimation moments. As such, they require minimal compu-

tation beyond what is needed to estimate model parameters θ in the first place.

The idea behind (10) is to choose the weights ĉ and d̂1, . . . , d̂τ so that κ̂bc does

not depend on γ̂ to first order.11 This means that, to first order, κ̂bc behaves like the

right-hand side of (10) with γ̂ replaced by the true value γ0 = γ(θ0, e0), where θ0 are

the true structural parameters and e0 are the true latent attributes. In doing so, this

purges the first-order effect of proxying e with ẽ. In Section 6.1, we show that, as a

result, the asymptotic distribution of κ̂bc is centered around the true counterfactual κ0

and does not depend on γ̂. This has two important implications: first, κbc is immune

to any bias arising from proxying e with ẽ, and second, standard errors do not need

to be corrected when ẽ is chosen in a data-dependent way, e.g., by fine tuning an ML

model on choice data.

For the intuition, consider the case without microdata. A Taylor expansion of the

11There is a long tradition of using corrections such as these in two-step estimation. See, e.g.,
Andrews (1994a) and Newey (1994). Of course, similar debiasing ideas underlie the DML literature.
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naive estimator yields

κ̂ ≈ 1

T

T∑
t=1

(
kt(γ0) +

∂kt(γ̂)

∂γ′
(γ̂ − γ0)

)
.

We wish to eliminate the second problematic term depending on γ̂−γ0. To do so, we

replicate the dependence of κ̂ on γ̂ − γ0 using the estimation moments. This means

that the vector of weights ĉ will be chosen so that

1

T

T∑
t=1

∂kt(γ̂)

∂γ′
= ĉ′

(
1

T

T∑
t=1

Zt
∂ξ̂t(γ̂)

∂γ′

)
.

There are many different weights ĉ with this property; the weights introduced below

are designed to minimize the asymptotic variance of κ̂bc. Substituting in the previous

display and “undoing” the Taylor expansion, we get

κ̂ ≈ 1

T

T∑
t=1

(
kt(γ0) + ĉ′Zt

∂ξ̂t(γ̂)

∂γ′
(γ̂ − γ0)

)

≈ 1

T

T∑
t=1

(
kt(γ0) + ĉ′Ztξ̂t(γ̂)− ĉ′Ztξ̂t(γ0)

)
.

This suggests that to correct bias we want to adjust the naive estimator by subtracting
1
T

∑T
t=1(ĉ

′Ztξ̂t(γ̂)− ĉ′Ztξ̂t(γ0)). The final (infeasible) term depending on γ0 has mean

zero by virtue of (2), so we drop it, leading to the corrected estimator (11). This

correction therefore ensures that, to first order, κ̂bc depends only on γ0.

What assumptions are needed for this result? Besides standard regularity condi-

tions, we require that the discrepancy between γ̂ and the true value γ0 not be too

large relative to sampling error (see Section 6.1 for a discussion). Figure 2 shows that,

in simulations, κ̂bc has negligible bias up to moderate amounts of mismeasurement

(and thus moderate deviations of γ̂ from γ0), while for high amounts of mismeasure-

ment (and thus large deviations of γ̂ from γ0), the bias of κ̂bc is still well below that

of the naive estimator. We also implicitly require that the ej and ẽj have the same

dimension r. In the next subsection, we provide two diagnostics to help researchers

choose among proxies so that both these conditions are plausibly satisfied.
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To introduce the expressions for the weights ĉ and d̂1, . . . , d̂τ , let

V̂ =
1

T

T∑
t=1

(Ztξ̂t(γ̂))(Ztξ̂t(γ̂))
′ − ḡḡ′,

V̂t =
T

Nt

(
1

Nt

Nt∑
i=1

mitm
′
it − m̄tm̄

′
t

)
, t = 1, . . . , τ,

denote the sample variance of the estimation moments, where ḡ = 1
T

∑T
t=1 Ztξ̂t(γ̂).

Define

ĥ = k̂ − Ĝ′V̂ −1K̂, Ĥ = Ĝ′V̂ −1Ĝ+
τ∑
t=1

M̂ ′
tV̂

−1
t M̂t, (12)

where k̂ = 1
T

∑T
t=1 k̇t(γ̂) is dim(γ) × 1, K̂ = 1

T

∑T
t=1 kt(γ̂)Ztξ̂t(γ̂) is dim(z) × 1, Ĝ =

1
T

∑T
t=1 Ztξ̇t(γ̂) is dim(z)×dim(γ), M̂t = ṁt(γ̂) is dim(m)×dim(γ), and k̇t(γ) =

∂kt(γ)
∂γ

,

ξ̇t(γ)
′ = ∂ξ̂t(γ)′

∂γ
, and ṁt(γ)

′ = ∂mt(γ)′

∂γ
are dim(γ)×1, dim(γ)×Jt, and dim(γ)×dim(m),

respectively. The weights to plug into (10) are

ĉ = V̂ −1(K̂ + ĜĤ−1ĥ), (13)

and

d̂t = V̂ −1
t M̂tĤ

−1ĥ, t = 1, . . . , τ. (14)

Without microdata, d̂1 = . . . = d̂τ = 0 and Ĥ = Ĝ′V̂ −1Ĝ.

We defer formal statements of the results sketched out above to Section 6.1, and

instead highlight a few key properties of the corrected estimator.

Remark 2 (Easy to compute standard errors). The asymptotic variance of the bias-

corrected estimator can be estimated as follows:

V̂bc = ŝ2k + ĉ′V̂ ĉ− 2ĉ′(K̂ − k̄ḡ) +
τ∑
t=1

d̂′tV̂td̂t, (15)

where ŝ2k = 1
T

∑T
t=1 kt(γ̂)

2 − k̄2 and k̄ = 1
T

∑T
t=1 kt(γ̂) are the sample variance and

sample mean of kt(γ̂). Without microdata, the expression simplifies to

V̂bc = ŝ2k + ĉ′V̂ ĉ− 2ĉ′(K̂ − k̄ḡ). (16)
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In either case, standard errors for κ̂bc are

√
V̂bc/T . Again, these are closed-form

expressions involving quantities that are easy to compute given θ̂.

Remark 3 (Efficiency). The weights ĉ and d̂1, . . . , d̂τ are chosen so that the asymp-

totic variance of κ̂bc (and thus standard errors) are as small as possible: see Proposi-

tion 2 in Section 6.1 for a formal statement. Importantly, κ̂bc remains efficient even

if θ̂ is inefficient. Thus, there is no need to estimate θ using an optimal weighting

and/or optimal instruments.

Remark 4 (Fine Tuning). The bias correction in (10) and standard error formulas in

Remark 2 allow the proxies ẽ to be sample-dependent. In the context of embeddings,

this accommodates scenarios where an off-the-shelf algorithm has been fine tuned on

the choice data to provide a better fit. Because κ̂bc doesn’t depend on ẽ to first order,

there is no need to correct the standard errors for fine tuning.

2.3 Diagnostics

Next, we propose two diagnostics that practitioners can use to assess the suitability

of a candidate set of proxies ẽ. The first speaks to whether γ̂ = γ(θ̂, ẽ) is sufficiently

close to the truth γ0 = γ(θ0, e0). The second addresses the question of whether

the dimension of ẽ matches that of e0. Both diagnostics are based on LM statistics

evaluated at γ̂, so they require minimal additional computation.

2.3.1 Diagnostic 1: Is γ̂ Close To γ0?

The bias correction is based on linearization and thus requires the discrepancy be-

tween γ̂ and γ0 to not be too large relative to sampling error, as discussed above. Here

we show that a simple LM statistic can be used to validate this condition. This diag-

nostic is also helpful to guide the choice among sets of embeddings (e.g., embeddings

obtained from various data source and/or ML model combinations).

The first diagnostic is

LM1 = ∥
√
TĤ−1/2Ŝ∥2, (17)

where Ŝ = Ĝ′V̂ −1( 1
T

∑T
t=1 Ztξ̂t(γ̂))+

∑τ
t=1 M̂

′
tV̂

−1
t (mt(γ̂)− m̄t) represents the “score”

at γ̂ and Ĥ is given in (12). This diagnostic can be interpreted as the LM statistic in

a test of the null hypothesis that γ0 is in the set of composite parameters spanned by
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the candidate proxies ẽ, ignoring the fact that ẽ is possibly stochastic.12 Proposition 4

below shows that LM1 behaves like ∥
√
T (γ̂− γ0)∥2 as the sample size grows large. In

other words, researchers can validate the assumption that the discrepancy between

γ̂ and γ0 is sufficiently small, as needed in Proposition 1, by checking whether LM1

is below a threshold. In particular, for any sequence CT = o(T 1/4), we have that

LM1 ≤ C2
T implies ∥γ̂ − γ0∥ ≤ constant × CT/

√
T = o(T−1/4) with probability

approaching one. It can also be shown under a slight strengthening of the conditions

of Proposition 4 that LM1 can be used to bound ∥ẽ − e0∥, providing a measure of

how well the proxies ẽ capture the true latent attributes e driving consumer choices.

This is especially useful as the true e0 can never be observed. As a result, LM1 also

serves as a model-based criterion to target when fine tuning.

2.3.2 Diagnostic 2: Is The Dimension of ẽ Correct?

When estimating this type of model, practitioners also have to choose how many

attributes to include. In our notation, this corresponds to choosing the dimension of

ẽ. This is particularly delicate in the cases where the candidate proxies don’t have

a natural economic interpretation, as is typically the case when they are obtained

from black-box ML algorithm or by applying principal component analysis (PCA) to

a rich set of numeric attributes. For example, in the application of Section 5, we use

PCA to reduce the dimensionality of proxies obtained from pre-trained algorithms;

the relevant question is then how many principal components to include in the model.

We provide guidance on this by again considering a diagnostic based on an LM

statistic. The idea is to augment ẽ with a vector η ∈ RJ representing some excluded

but potentially important product attributes and augment θ with an additional com-

ponent ψ ∈ Ψ representing coefficients on η. The second diagnostic is based on an

LM statistic for the null that ψ = 0. Like LM1, this diagnostic depends on θ̂ only

and therefore requires minimal additional computation.

To introduce the diagnostic, we extend γ to ζ = (γ, ψ). With slight abuse of

notation, we now write ξ̂jt and mt on this extended space as functions ξ̂jt(ζ; η) and

mt(ζ; η) of ζ and η, with the understanding that ξ̂jt(γ) = ξ̂jt((γ, 0); η) and mt(γ) =

12Formally, a test of H0 : γ0 ∈ Γ(ẽ) := {γ(θ, ẽ) : θ ∈ Θ} against the alternative H1 : γ0 ∈ Γ \Γ(ẽ),
where Θ and Γ are the parameter spaces for θ and γ, respectively.
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mt((γ, 0); η). Let

λ̂(η) =

(
1

T

T∑
t=1

Ztwt(γ̂, η)

)′

V̂ −1(I − Ĝ(Ĝ′V̂ −1Ĝ)−1Ĝ′V̂ −1)
√
T ḡ, (18)

λ̂t(η) = ut(γ̂, η)
′V̂ −1
t (I − M̂t(M̂

′
tV̂

−1
t M̂t)

−1M̂ ′
tV̂

−1
t )

√
T (mt(γ̂)− m̄t), (19)

where wt(γ, η) = (wjt(γ, η)
′)j∈Jt is |Jt| × dim(ψ) and ut(γ, η) are dim(ψ) × dim(m),

with

wjt(γ, η) = lim
ψ→0

∂ξ̂jt((γ, ψ); η)

∂ψ
, j ∈ Jt, ut(γ, η)

′ = lim
ψ→0

∂mt((γ, ψ); η)
′

∂ψ
.

We take limits to deal with parameters that are at the boundary when ψ = 0, such as

the variance of the random coefficients on η. For the intuition, the left-most terms in

(18) and (19) are the Jacobian of the moments with respect to ψ. These can depend

to first order on γ̂. The second parts of these expressions eliminate this dependence

with a similar correction to κ̂bc. We estimate the variance of λ̂(η) and λ̂t(η) using

Λ̂(η) =

(
1

T

T∑
t=1

Ztwt(γ̂, η)

)′

V̂ −1(I − Ĝ(Ĝ′V̂ −1Ĝ)−1Ĝ′V̂ −1)

(
1

T

T∑
t=1

Ztwt(γ̂, η)

)
,

(20)

Λ̂t(η) = ut(γ̂, η)
′V̂ −1
t (I − M̂t(M̂

′
tV̂

−1
t M̂t)

−1M̂ ′
tV̂

−1
t )ut(γ̂, η).

Finally, define

Ŵ (η) =

(
λ̂(η) +

τ∑
t=1

λ̂t(η)

)′(
Λ̂(η) +

τ∑
t=1

Λ̂t(η)

)−1(
λ̂(η) +

τ∑
t=1

λ̂t(η)

)
.

Without microdata, Ŵ (η) simplifies to Ŵ (η) = λ̂(η)′Λ̂(η)−1λ̂(η). The statistic Ŵ (η)

can be shown to behave like a χ2
dim(ψ) random variable under the null (i.e., when the

true ψ = 0), but it depends on the nuisance parameter η. Thus, we define our second

diagnostic as

LM2 = sup
η∈SJ :η⊥C(ẽ)

Ŵ (η), (21)

where we take the supremum over η in the unit sphere (since the scale of η is not

important) that are orthogonal to the column span of ẽ.
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Following, e.g., Hansen (1996), critical values can be computed by simulation.

Draw (ϖ∗
t )
T
t=1, (ϖ

∗
i1)

N1
i=1, . . . , (ϖ

∗
iτ )

Nτ
i=1 iid from a N(0, 1) distribution, and set

Ŵ ∗(η) =

(
λ̂∗(η) +

τ∑
t=1

λ̂∗t (η)

)′(
Λ̂(η) +

τ∑
t=1

Λ̂t(η)

)−1(
λ̂∗(η) +

τ∑
t=1

λ̂∗t (η)

)
,

where

λ̂∗(η) =

(
1

T

T∑
t=1

Ztwt(γ̂, η)

)′

V̂ −1(I − Ĝ(Ĝ′V̂ −1Ĝ)−1Ĝ′V̂ −1)

(
1√
T

T∑
t=1

ϖ∗
tZtξ̂t(γ̂)

)
,

λ̂∗t (η) = ut(γ̂, η)
′V̂ −1
t (I − M̂t(M̂

′
tV̂

−1
t M̂t)

−1M̂ ′
tV̂

−1
t )

(
1√
T

Nt∑
i=1

ϖ∗
it(mt(γ̂)−mit)

)
.

For each collection of N(0, 1) draws, compute

LM∗
2 = sup

η∈SJ :η⊥C(ẽ)

Ŵ ∗(η)2.

Let ξ̂∗0.95 denote the 95th percentile of LM∗
2 across a large number of independent

draws. This quantity is easy to compute, as only the right-most terms in the expres-

sions for λ̂∗ and λ̂∗t need to be recomputed for different draws and these terms do not

depend on η. We reject the null that the dimension of ẽ is adequate if LM2 > ξ̂∗0.95.

Example 1 (continued). Let the random coefficient on η be δi = ψ1+
√
ψ2Zi, where

Zi ∼ F0 has mean zero and unit variance, ψ1 ∈ R, and ψ2 ∈ [0,∞). For simplicity,

suppose x̄t is empty and |Jt| = J . Define the functions σjt( · ; (γ, ψ), η) and ςjt( · ; γ)
from RJ to R by

σjt(ξt; (γ, ψ), η) =

∫
ςjt(ξt + (ψ1 +

√
ψ2z)η; γ) dF0(z),

ςjt(u; γ) =

∫
e−α

′pjt+β′ej+uj

1 +
∑

k∈Jt
e−α′pkt+β′ek+uk

dF (α, β),

where we have suppressed dependence on pt. Here ξ̂jt(ζ; η) solves sjt = σjt(ξ̂; ζ, η) for

j ∈ Jt. Evidently, ξ̂jt(γ) = ξ̂jt((γ, 0); η). Using ς̇jt and ς̈jt to denote the first and
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second derivatives of ςjt with respect to its first argument, we have

lim
ψ→0

∂σjt(ξ̂t((γ, ψ); η); (γ, ψ), η)

∂ψ
=

[
η′ς̇jt(ξ̂t(γ); γ)

1
2
η′ς̈jt(ξ̂t(γ); γ)η

]
.

It follows by the implicit function theorem that

wt(γ, η) = −

(
∂σt(ξ̂t(γ); (γ, 0), η)

∂ξ′

)−1 (
η′ς̇jt(ξ̂t(γ); γ)

1
2
η′ς̈jt(ξ̂t(γ); γ)η

)
j∈Jt

,

where σt(ξt; ζ, η) = (σjt(ξt; ζ, η))j∈Jt. Plugging this into (18) and (20), one can com-

pute Ŵ (η) and thus the LM2 diagnostic.

2.4 Practitioner’s Guide

Given a counterfactual of interest κ and a candidate set of proxies ẽ:

1. Calculate the model parameter estimates θ̂ as usual, treating ẽ as the truth.

2. Compute weights ĉ in (13) and, if microdata is available, weights d̂t in (14).

3. Plug the weights in (10) to compute the corrected estimator κ̂bc. If only aggre-

gate data is available, use (11) instead.

4. Compute standard errors for κ̂bc using Remark 2.

5. To check whether a given set of proxies ẽ is adequate:

(a) Compute the LM1 statistic in (17). If it’s below a threshold C2
T , conclude

that ẽ is sufficiently close to e0. In Section 6.1.2, we motivate a threshold

of C2
T = χ2

dim(γ),0.95 log T to deliver a rate of
√
(log T )/T .

(b) Compute the LM2 statistic in (21). If it’s below a threshold ξ̂∗0.95, conclude

that ẽ is of adequate dimension. The bootstrap method in Section 2.3.2

can be used to compute ξ̂∗0.95.

2.5 What About Models with Standard Numeric Attributes?

Our approach also provides a data-driven way to robustly estimate counterfactuals

and validate some of the assumptions implicitly made in the demand estimation lit-
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erature in contexts where only standard numeric attributes are available. The typical

workflow assumes that product attributes are measured without error and are of ad-

equate dimension. Our bias correction allows practitioners to relax the assumption

of correct measurement. To do so, the bias-corrected estimator can be implemented

as above, where now ẽ simply represents the numeric attributes that may be mis-

measured. The resulting bias-corrected estimator is robust to such mismeasurement.

Similarly, our diagnostics may be used to choose among attributes and assess whether

the dimension of a candidate set of attributes is adequate.

Even when mismeasurement is not a concern, our bias-corrected estimator and

standard error formulas can be used to perform efficient inference on counterfactuals

(see Proposition 2 below for a formal statement). In this case, there is no need to

reparameterize the model to account for mismeasurement and both are implemented

as described above with γ ≡ θ. This approach offers a few advantages: (i) it yields

efficient estimates of counterfactuals even when θ̂ is inefficient, (ii) standard errors

are available in closed form, avoiding the need to bootstrap; and (iii) it allows for

combined market-level and microdata.

3 Case 2: Individual-Level Price Variation and

Product Fixed Effects

Next, we consider settings with individual-level price variation and choice data. Fol-

lowing an established literature (Dubé and Rossi, 2019), we assume the researcher

includes product fixed effects to account for systematic differences across products

and is willing to rule out any remaining price endogeneity.

3.1 Model and Data

The researcher has data on a large number n of consumers in a single market in which

J goods are sold,13 and identifies the outside option with j = 0. For each consumer

i, the researcher observes individual choices di = (dij)
J
j=1 where dij = 1 if i chooses

good j and 0 otherwise, pi = (pij)
J
j=1 which collects prices and other variables (e.g.,

13As before, we assume that J is fixed but it is straightforward to extend our analysis to asymp-
totic thought experiments where J grows slowly with n. For ease of exposition, we present results
for a single market, though our approach extends easily to settings with multiple markets.

19



rankings on the results page) that vary across consumers, and a vector of demographic

variables yi. For each product j, the data also may contain attributes xj that are

common across all consumers. The model predicts choice probabilities as a function

of pi, yi, x = (xj)
J
j=1, and a parameter vector θ:

Pr(dij = 1|pi, yi, x; θ) = σj(pi, yi, x; θ), j = 1, . . . , J. (22)

This model subsumes many empirical examples. Here we give just one standard

workhorse model.

Example 3 (Mixed Logit with Fixed Effects). The utility that individual i derives

from good j is of standard mixed-logit form with microdata:

uij = α′
ipij + β′

ixj + x′jΠyi + ξj + εij, j = 1, . . . , J,

ui0 = εi0,

where ξj is a product fixed effect and the εij are iid type 1 extreme value random

variables. The vector xj collects characteristics with random coefficients only; char-

acteristics with non-random coefficients are absorbed into the product fixed effect ξj.

Choice probabilities are

σj(pi, yi, x; θ) =

∫
eα

′pij+β′xj+x′jΠyi+ξj

1 +
∑J

k=1 e
α′pik+β′xk+x

′
kΠyi+ξk

dF (α, β; θ), j = 1, . . . , J,

where F is a parametric distribution and θ contains (ξj)
J
j=1 and other parameters.

As before, we partition xj ≡ (x̄j, ej), where x̄j is a vector of standard observed

product attributes, such as product size, and ej is an r-vector representing product

attributes that are harder to capture using standard numeric data and which we

treat as latent to the econometrician. We again assume the researcher has proxies

ẽ = (ẽ′j)
J
j=1 for the true underlying e = (e′j)

J
j=1 and stay agnostic on the form that

ẽ takes. A leading case is again the scenario where ẽj are embeddings computed to

represent unstructured data Uj, though our approach may equally be used in scenarios

where ẽj represents some potentially mismeasured product attributes.
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3.2 Bias-Corrected Counterfactuals

We are interested in estimating a counterfactual of the form

κ = E[k(pi, yi, x̄, e; θ)],

where the expectation is over the distribution of (pi, yi). Here κ might represent an

average price-elasticity of consumers, average equilibrium price, or average welfare

measure. It could also represent a quantity that doesn’t depend on the distribution

of (pi, yi), such as the price-elasticity or welfare measure for an individual with given

y facing given prices p, in which case the expectation is redundant.

In the usual workflow, model parameters are estimated using the observed data

and a candidate set of proxies ẽ. For instance, one could use maximum likelihood.

Given an estimate θ̂ of θ, the counterfactual κ is usually estimated as

κ̂ =
1

n

n∑
i=1

k(pi, yi, x̄, ẽ; θ̂).

As before, we refer to this as the naive estimator of κ since it does not account for the

fact that the proxies ẽ might differ from the true latent attributes. Mismeasurement

of e affects the naive estimator of κ both directly, since ẽ is an argument of k, and

indirectly through bias in the first-stage estimate θ̂, since ẽ enters the likelihood.

We now introduce a bias-corrected estimator of κ that is designed to mitigate the

effects of using ẽ in place of the true e. As before, we consider models in which e and

θ enter choice probabilities (22) via a composite parameter

γ ≡ γ(θ, e).

As before, many common specifications have this property. We illustrate it in our

leading example.

Example 3 (continued). We partition βi = (βx̄,i, βe,i) and Π = [Πx̄ Πe] and write

the utilities as:

uij = α′
ipij + x̄′jΠx̄yi + e′jΠeyi + ξj + β′

x̄,ix̄j + β′
e,iej + εij, j = 1, . . . , J,

Suppose αi ∼ N(ᾱ,Σα), βx̄,i ∼ N(0,Σx̄), and βe,i ∼ N(0,Σe), and αi, βx̄,i, and βe,i
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are independent. Recall the notation l and lr from Example 1. Then,

θ = (ᾱ, ξ, v(Πx̄), v(Πe), l(Σα), l(Σx̄), l(Σe)),

where ξ = (ξj)
J
j=1, and v(Π) stacks the entries of Π into a vector. Collecting β′

e,iej

across products, we have eβe,i ∼ N(0, eΣee
′), where eΣee

′ has rank r ≤ J . Hence,

γ(θ, e) = (ᾱ, ξ, v(Πx̄), v(eΠe), l(Σα), l(Σx̄), lr(eΣee
′)).

As before, parameters that do not interact with e, such as ᾱ and ξ, are left unchanged,

whereas we expand the parameter space for those that interact with e to capture the

effect of shifting e and/or θ.

We shall implicitly assume in what follows that the right-hand side of (22) depends

on (θ, e) only via γ(θ, e). We similarly restrict attention to counterfactuals that

depend on (θ, e) only via γ(θ, e) and write

σij(γ(θ, e)) = sj(pi, yi, x̄, e; θ), j = 1, . . . , J,

ki(γ(θ, e)) = k(pi, yi, x̄, e; θ).

We then define the bias-corrected estimator

κ̂bc =
1

n

n∑
i=1

(ki(γ̂) + ĉ′i(di − σi(γ̂))) , (23)

where γ̂ = γ(θ̂, ẽ), and ĉi, di = (dij)
J
j=1, and σi(γ) = (σij(γ))

J
j=1 are J × 1, vectors,

with

ĉi = Vi(γ̂)
−1σ̇i(γ̂)Ĥ

−1k̂, (24)

where Vi(γ) = diag(σi(γ)) − σi(γ)σi(γ)
′ and Ĥ = 1

n

∑n
i=1 σ̇i(γ̂)

′Vi(γ̂)
−1σ̇i(γ̂) are of

dimension J × J , k̂ = 1
n

∑n
i=1 k̇i(γ̂) and k̇i(γ) =

∂ki(γ)
∂γ

are dim(γ) × 1, and σ̇i(γ)
′ =

∂σi(γ)
′

∂γ
is dim(γ) × J . Importantly, κ̂bc involves closed-form expressions of objects

that can be easily computed given the estimate θ̂. As a result, it requires minimal

computation beyond what is needed to estimate the model.

As before, κ̂bc takes the naive estimator and adds an adjustment term that purges

the effect of γ̂ on κ̂bc to first order. Proposition 5 in Section 6.2 shows that the

asymptotic distribution of κ̂bc is centered around the true counterfactual κ0 and does
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not depend on γ̂. This means κ̂bc is immune to any bias arising from proxying e

with ẽ, and its variance is not impacted by data-dependent ẽ. We defer the formal

statement of these results to Section 6.2 and instead highlight a few key properties.

Remark 5 (Easy to compute standard errors). The asymptotic variance of κ̂bc can

be easily estimated using

V̂bc = ŝ2k +
1

n

n∑
i=1

ĉ′iVi(γ̂)ĉi, (25)

where ŝ2k is the sample variance of ki(γ̂). Standard errors for κ̂bc are then

√
V̂bc/n.

Remark 6 (Semiparametric Efficiency). We may view model (22) as a conditional

moment model based on the moment condition

σi(γ0) = E[di|pi, yi, x̄]. (26)

In Section 6.2, we show that the asymptotic variance of κ̂bc is the semiparametric

efficiency bound for estimating κ in model (26) (Brown and Newey, 1998; Ai and

Chen, 2012). Thus, there do not exist regular estimators of κ in model (26) with

smaller asymptotic variance than the bias-corrected estimator κ̂bc.

Remark 7 (Fine Tuning). The bias correction in (23) allows the proxies ẽ to be

sample-dependent, for instance because an ML algorithm has been fine tuned on the

choice data to provide a better fit. As before, there is no need to correct the standard

errors: one can use

√
V̂bc/n with V̂bc as above whether or not ẽ is data-dependent.

3.3 Diagnostics

Here we propose two diagnostics that can be used to assess the suitability of a candi-

date set of proxies ẽ. The first can be used to assess whether γ̂ = γ(θ̂, ẽ) is sufficiently

close to the truth γ0 = γ(θ0, e0) as required by our theory in Section 6.2. The second

can be used to determine whether the true e are higher dimensional than the proxies

ẽ. Both diagnostics are again based on LM statistics so that they require minimal

additional computation. Later, we will show that these two diagnostics perform well

in finite samples via both simulations and in our empirical application.

23



The standard demand estimation workflow implicitly assumes that product at-

tributes are measured without error and are of the correct dimension. Our diagnos-

tics may be used to assess the validity of these implicit assumptions even in standard

contexts with only quantifiable attributes.

3.3.1 Diagnostic 1: Is γ̂ Close To γ0?

As in Section 2.3.1, a simple LM statistic can be used to check whether γ̂ is suffi-

ciently close to γ0. This diagnostic is also helpful to guide the choice among sets of

embeddings obtained from various data source and/or ML model combinations. Let

LM1 = ∥
√
nĤ−1/2Ŝ∥2, (27)

where Ŝ = 1
n

∑n
i=1

∑J
j=0

dij
σij(γ̂)

σ̇ij(γ̂) is the score and Ĥ is the (expected) Hessian,

defined below (24). As before, this diagnostic can be interpreted as an LM statistic

for a test of the null hypothesis that γ0 is in the set of composite parameters spanned

by ẽ. Proposition 6 below shows that LM1 behaves like ∥
√
n(γ̂−γ0)∥2 as n grows large.

This allows researchers to validate the assumption that the discrepancy between γ̂ and

γ0 is sufficiently small, as needed in Proposition 5, by checking whether LM1 is below

a threshold. In particular, for any sequence Cn = o(n1/4), we have that LM1 ≤ C2
n

implies ∥γ̂ − γ0∥ ≤ constant × Cn/
√
n = o(n−1/4) with probability approaching one.

Further, Proposition 7 shows that LM1 can be used to bound the discrepancy between

ẽ and e0.

3.3.2 Diagnostic 2: Is The Dimension of ẽ Correct?

The construction follows similar ideas to Section 2.3.2. We augment ẽ with a vector η

representing additional attributes not included in ẽ and augment θ with an additional

component ψ ∈ Ψ representing coefficients on η. Correspondingly, we extend γ to

ζ = (γ, ψ). With slight abuse of notation, we now write choice probabilities on this

extended space as σij(ζ; η), with the understanding that σij(γ) = σij((γ, 0); η).

Consider an LM test of the null hypothesis that ψ = 0. Such a test could be based

on the score
1

n

n∑
i=1

J∑
j=0

dij
σij(γ̂)

wij(γ̂, η), (28)
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where

wij(γ, η) = lim
ψ→0

∂σij((γ, ψ); η)

∂ψ
.

Example 3 (continued). Let the random coefficient on η be δi ∼ ψZi, where ψ ∈
[0,∞) and Zi ∼ F0 has mean zero and unit variance. For simplicity, suppose Π = 0.

Define the functions σij( · ; (γ, ψ), η) and ςij( · ; (γ, ψ), η) from RJ to R by

σij((γ, ψ); η) =

∫
ςij(ξ +

√
ψηz; γ) dF0(z),

ςij(u; γ) =

∫
eα

′pij+β′ej+uj

1 +
∑J

k=1 e
α′pik+β′ek+uk

dF (α, β),

where we have suppressed dependence on pij and x̄. Using ς̇ij and ς̈ij to denote first

and second derivatives of ςij with respect to its first argument, we have

∂σij((γ, ψ); η)

∂ψ
=

1

2
√
ψ

∫
zη′ς̇ij(ξ +

√
ψηz; γ) dF0(z).

and so wij(γ, η) =
1
2
η′ς̈ij(ξ; γ)η. The term wij(γ̂, η) =

1
2
η′ς̈ij(ξ̂; γ̂)η is plugged into the

LM2 statistic below.

The statistic (28) can still depend to first order on γ̂. To eliminate this dependence,

we perform a similar correction to κ̂bc. Let gi(γ; η) = wi(γ, η)
′Vi(γ)

−1(di − σi(γ)),

where wi(γ; η) = (wij(γ; η)
′)Jj=1 is J × dim(ψ). Then define the dim(ψ)× J matrix

ĉi(η)
′ =

(
1

n

n∑
l=1

wl(γ̂; η)
′Vl(γ̂)

−1σ̇l(γ̂) + ġl(γ̂; η)

)
Ĥ−1σ̇i(γ̂)

′Vi(γ̂)
−1,

where ġi(γ; η)
′ = ∂gi(γ;η)

∂γ
is dim(γ)× dim(ψ), and let

λ̂(η) =
1√
n

n∑
i=1

ĉi(η)
′(di − σi(γ̂)), Λ̂(η) =

1

n

n∑
i=1

ĉi(η)
′Vi(γ̂)ĉi(η).

Finally, let

Ŵ (η) = λ̂(η)′Λ̂(η)−1λ̂(η).

It can be shown that the statistic Ŵ (η) behaves like a χ2
dim(ψ) random variable under

the null (i.e., when the true ψ = 0), but it depends on the nuisance parameter η.
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Thus, we again define our second diagnostic as

LM2 = sup
η∈SJ :η⊥C(ẽ)

Ŵ (η).

Critical values can be computed by simulation: for iid N(0, 1) random variables

(ϖ∗
i )
n
i=1, compute

LM∗
2 = sup

η∈SJ :η⊥C(ẽ)

Ŵ ∗(η)2,

where Ŵ ∗(η) = λ̂∗(η)′Λ̂(η)−1λ̂∗(η), with λ̂∗(η) = 1√
n

∑n
i=1ϖiĉi(η)

′(di − σi(γ̂)). Note

λ∗(η) factors into the product of terms involving η, which only need to be computed

once, and terms involving (ϖ∗
i )
n
i=1, which are trivial to compute. Let ξ̂∗0.95 denote the

95th percentile of LM∗
2 across a large number of independent sequences (ϖ∗

i )
n
i=1. The

null that the dimension of ẽ is adequate can be rejected if LM2 > ξ̂∗0.95.

3.4 Practitioner’s Guide

Given a counterfactual of interest κ and a candidate set of proxies ẽ:

1. Calculate the model parameter estimates θ̂ as usual.

2. Compute weights ĉ in (24).

3. Plug the weights in (23) to compute the corrected estimator κ̂bc.

4. Compute standard errors for κ̂bc using Remark 5.

5. To check whether a given set of proxies ẽ is adequate:

(a) Compute the LM1 statistic in (27). If it’s below a threshold C2
n, conclude

that ẽ is sufficiently close to e0. In Section 6.2.2, we motivate a threshold

of C2
n = χ2

dim(γ),0.95 log n to deliver a rate of
√

(log n)/n.

(b) Compute the LM2 statistic in (28). If it’s below a threshold ξ̂∗0.95, conclude

that ẽ is of adequate dimension. The bootstrap method in Section 3.3.2

can be used to compute ξ̂∗0.95.
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4 Simulations

We first illustrate our approach in simulations. We consider the model in Section 3

with 10 products and 10,000 consumers. These figures are in line with the data used

in the empirical application in Section 5. We model utility as a function of price and

two-dimensional latent attributes e (in addition to idiosyncratic shocks). The latent

attributes ej are drawn iid N(0, 1) across products. Individual-level prices are drawn

iid from a N(5, 1) distribution and vary across simulations. The random coefficient on

price is N(−1, 0.32) and the coefficients on the latent attributes are iid N(0, 0.752).

We keep the latent attributes e fixed in the data generating process and vary the

amount of mismeasurement in the proxies ẽ that are used in estimation. Specifically,

for every j, we let:

ẽj = (1− ρ)ej +
√

1− (1− ρ)2ηj, (29)

where ηj is a two-dimensional standard normal random vector drawn iid across sim-

ulations and ρ determines the amount of mismeasurement in ẽ. When ρ = 0, the

proxies exactly match the latent attributes, whereas as ρ increases towards 1 the

proxies are increasingly mismeasured. We note that this simulation design imposes

very few restrictions on the form of mismeasurement. In particular, depending on

the draw of ηj, each element of ẽj could be smaller or larger than the corresponding

element of ej and this can freely vary across goods j.14

We focus on estimation of the fraction of consumers that switch from one product

to another one when the former is removed from the choice set. Figure 1 plots his-

tograms of the naive estimator that takes the proxies ẽ as true and the distribution

of our bias corrected estimator across simulations. As the level of mismeasurement

increases, the distribution of the naive estimator moves away from the true value of

the counterfactual (roughly 0.05), whereas the corrected estimator remains centered

around the true value. Interestingly, for larger levels of mismeasurement, the dis-

tribution of the naive estimator ends up being centered around the counterfactual

prediction of the logit model with no random coefficients. This is intuitive: as the

proxies ẽ become increasingly noisy, they capture less of the substitution patterns

in the data, and the estimated variance of their random coefficients shrinks towards

14Note that (29) is such that ẽj has roughly the same amount of variation across goods j as ej
does. This allows us to isolate the effect of mismeasurement in a way that is not confounded by
changes in the scale of the proxies ẽj used in estimation.
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Figure 1: Distribution of the naive and bias-corrected estimators

(a) Low mismeasurement (ρ = 0.1) (b) Medium mismeasurement (ρ = 0.2)

(c) High mismeasurement (ρ = 0.3) (d) Very high mismeasurement (ρ = 0.4)

zero. This finding also serves as a warning that mismeasurement in the proxies can

defeat the purpose of estimating a random coefficients model in the first place: if

the mismeasurement bias is not properly accounted for, the model may revert to the

restrictive substitution patterns that the model was specifically intended to relax.

To better assess the trade-offs involved in our bias correction, Figure 2 shows how

the bias and RMSE of the two estimators vary with the amount of mismeasurement

ρ. When ẽ is measured with no error, both the naive and the bias-corrected estimator

have very low bias. Our estimator has a marginally higher RMSE, indicating that its

variance is slightly higher than that of the naive estimator. This is intuitive: since

the naive estimator leverages the assumption that the proxies ẽ are correct and ours

does not, we obtain slightly less precise estimates when that assumption happens to

be correct. However, this is a knife-edge case. When mismeasurement is present, our

estimator consistently achieves lower bias and RMSE than the naive estimator. The

28



Figure 2: Bias and RMSE of the naive and bias-corrected estimators

comparison is especially striking for small to moderate mismeasurement (ρ ∈ [0, 0.3]),

where the bias correction is able to remove essentially all of the bias. As expected,

when the mismeasurement becomes very large (ρ > 0.5), the bias correction starts to

also perform worse. This is because the bias correction requires that γ̂ be within a

vicinity of γ0 that is roughly double the order of sampling error.

Finally, Figure 3 shows that the LM1 diagnostic discussed in Section 3.3.1 is

able to correctly rank proxies. In particular, the average LM1 statistic increases

monotonically with the average distance between the γ̂ induced by the proxies and

γ0. This confirms that the diagnostic can be valuable in guiding researchers towards

proxies that are relatively close to the true latent attributes.

5 Empirical Application

We now apply our method to the experimental data from Compiani et al. (2025).

The data records the choices made by 9,265 participants when faced with a choice

of ten e-books. In a first task, participants were asked to choose their preferred e-

book based on information displayed to them, including (randomized) prices, standard

attributes (author, year of publication, genre and number of pages), and unstructured

information (cover images, titles, plot descriptions and reviews). In a second task,

each participant’s first choice was removed and they were asked to choose again from

the remaining nine books. Compiani et al. (2025) estimate a range of models on the

first choice data and compare their performance in predicting second choices. This

gives a direct measure of how well different models capture counterfactual substitution

patterns. Specifically, the paper compares mixed logit models based on standard
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Figure 3: Distance between γ̂ and γ0 versus LM1 diagnostic

attributes with mixed logit models that leverage proxies extracted from unstructured

data. The key findings are that (i) unstructured data is predictive of substitution

patterns, and (ii) book descriptions and reviews, when processed with transformer-

based text models, perform particularly well at predicting substitution.

The results in Compiani et al. (2025) treat the proxies as if they were correctly

specified. However, there are good reasons to believe that mismeasurement might

play an important role. First, the unstructured data are processed using pre-trained

ML models that are not targeted towards predicting substitution patterns.15 While

the resulting proxies are found to be predictive of substitution patterns, they may not

perfectly capture the underlying attributes that drive consumers’ choices. Second, the

dimension of the proxies is reduced via PCA before inputting them into the demand

model, which is likely to introduce further mismeasurement. This also raises the

question of how many principal components should be included in the model.

Here we investigate whether applying our bias correction method and diagnostics

helps better capture substitution patterns. We use the approach from Section 3 since

we have individual-level data and prices are randomized, so endogeneity is not a

15Specifically, images are processed via classification models trained to assign each image to one
of many classes; texts are processed using bag-of-words and transformer models: the former simply
capture word frequency, whereas the latter are trained to predict the next word in a text.
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concern. We focus on the ability of different models to correctly predict the closest

substitute for any given book. The second choice data give us a direct measure of

this: for a given book A, its closest substitute is the book that most people switch to

when A is removed from the choice set.

We note that this exercise sets a high bar for our approach. Unlike in a simulation,

the demand model might be misspecified even if the proxies are correctly specified.

For instance, the model assumes a normal distribution for the random coefficients

but the true distribution of preference heterogeneity might be different. As a result,

this exercise tests whether our approach works well even in cases where all assump-

tions needed for the theoretical results might not hold exactly. Further, by looking

at substitution patterns in response to product removals that are not part of the

estimation data, this provides a direct test of the model’s ability to correctly predict

counterfactuals.

Figure 4 shows the results. For each specification—defined as a combination of

unstructured data source and MLmodel used to extract proxies from it—we report the

fraction of the ten books for which the model correctly identifies the closest substitute

(as measured by the second choice data).16 The hashed bars show the performance

of the naive approach that uses the estimates from Compiani et al. (2025), whereas

the green solid bars show the performance of the bias-corrected estimator. Three

specifications are ruled out by the diagnostic LM2, indicating that they don’t feature a

sufficient number of random coefficients. For 11 out of the 13 remaining specifications

(around 85%), the bias correction weakly improves performance and the magnitude

of the improvement is large in several cases. In particular, for specifications using

reviews data, the fraction of correctly predicted substitutes goes from 40% to 60-70%.

For comparison, a coin flip would achieve a hit rate of 11%. Further, the specification

fitting the data best as measured by the LM1 diagnostic is among those achieving the

best counterfactual performance (70% with bias correction). These results confirm

that our approach is able to meaningfully improve counterfactual predictions and

guide researchers towards the best-performing specifications.

16The model prediction of the closest substitute is the product with the highest average (across
consumers) second-choice probability once product A is removed. Here, κ corresponds to the proba-
bility that B is a consumer’s second choice conditional on A being their first choice, averaged across
consumers, which we compute across all (A,B) pairs.
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Figure 4: Rates of correct closest substitutes predictions.

Notes: Solid bars show the fraction of books for which the bias-corrected estimator correctly
identifies the closest substitute. Hashed bars show the corresponding figures for the naive
estimator. The specifications ruled out by the LM2 diagnostic are grayed out. A star flags
the specification with the smallest LM1 diagnostic.

6 Theory

6.1 Case 1: Endogenous Prices

Let Γ denote the set of all values of γ(θ, e) as θ varies over the parameter space Θ and

e varies over all J × r matrices with linearly independent rows. We shall implicitly

assume in what follows that the true latent attributes e0 and the proxies ẽ are J × r

with linearly independent rows. We shall also implicitly assume that Γ is convex

and open. This is true for the γ(θ, e) given in Examples 1 and 2, for which Γ is the

product of copies of R and (0,∞) and is therefore convex and open.17 In Section 2,

the counterfactual function kt, ξ̂t from (8), and micro-moments mt depended on (θ, e)

only through the value of γ(θ, e). We can therefore view kt, ξ̂t, and mt as random

functions defined on Γ.

17 For instance, the operation l stacking the lower-triangular entries of the Cholesky factor maps
the manifold of symmetric positive definite matrices into the product of copies of R and (0,∞). A
similar result holds for the reduced-rank Cholesky decomposition lr (Neuman et al., 2023).
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6.1.1 Theory for Bias Correction

We first give results for the case of combined market-level data and microdata. We

let χt = (pt, ξt, x̄t, e) and let M denote the σ-algebra generated by χ1, . . . , χτ . Let

V = Var(Ztξ̂t(γ0)) be the dim(z)×dim(z) covariance matrix of the aggregate moments

at the true parameters, and let Vt = Var (mit|χt) be the dim(m)×dim(m) covariance

matrix of the micro moments for market t conditional on χt. Let

H = G′V −1G+
τ∑
t=1

M ′
t(rtVt)

−1Mt, (30)

where r1, . . . , rτ are defined in Assumption 1 below, and let h = E[k̇t(γ0)]−G′V −1K,

where K = E[kt(γ0)Ztξ̂t(γ0))] is dim(z)× 1, G = E[Ztξ̇t(γ0)] is dim(z)× dim(γ), and

Mt = ṁt(γ0) is dim(m)× dim(γ). Here V and h are deterministic whereas V1, . . . , Vτ

and H are M-measurable random matrices. Let N be a neighborhood of γ0.

Assumption 1. Let the following hold:

(i) kt(·), mt(·), and Ztξ̂t(·) are twice continuously differentiable in γ on N (almost

surely), and elements of the functions and their first and second derivatives are

uniformly (for γ ∈ N) bounded by a random variable Dt with finite fourth

moment;

(ii) E[∥mit∥2+δ|M] ≤ C (almost surely) for some 0 < δ,C <∞;

(iii) V is positive definite and λmin(V1), . . . , λmin(Vτ ), λmin(H) ≥ ϵ (almost surely)

for some ϵ > 0;

(iv) T/Nt → rt ∈ (0,∞) for 1 ≤ t ≤ τ .

Assumption 1(i)-(iii) are standard smoothness, moment, and rank conditions, re-

spectively. Assumption 1(iv) treats the sample size T of the aggregate data and the

sample sizes of the microdata as comparable. This is designed to give a meaningful

approximation to common empirical scenarios where T is in the high tens or hun-

dreds and Nt is in the hundreds or thousands for each market (e.g., Petrin (2002) and

Grieco et al. (2024)).

The next result shows that the bias-corrected estimator κ̂bc from (10) is asymptot-

ically centered at the true counterfactual κ0 = E[kt(γ0)] and its asymptotic variance

is independent of γ̂, θ̂, and ẽ. Because the effect of market-level variables in markets
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for which there is microdata persists in the limit, we use the notion of stable con-

vergence. We say a sequence of random variables ZT converges in distribution to Z

(M-stably) if limT→∞ Pr(ZT ≤ z, A) = Pr(Z ≤ z, A) for all continuity points z of

the distribution of Z and all M-measurable events A. Convergence in distribution is

a special case corresponding to replacing M with the trivial σ-algebra {∅,Ω}.

Proposition 1. Let Assumption 1 hold and γ̂ = γ0 + op(T
−1/4). Then

√
T (κ̂bc − κ0)

converges in distribution (M-stably) as T → ∞ to a mixed Gaussian random variable

with mean zero and M-measurable variance

Vbc = Var (kt(γ0)) + h′H−1h−K ′V −1K. (31)

The (random) asymptotic variance Vbc can easily be estimated using V̂bc in equa-

tion (15). Standard errors s.e.(κ̂bc) =

√
V̂bc/T are consistent under Assumption 1 and

valid inference can be performed based on t-statistics (κ̂bc − κ0)/s.e.(κ̂bc) using the

standard N(0, 1) critical values.

Remark 8. Proposition 1 requires ∥γ̂ − γ0∥ = op(T
−1/4), which is a standard condi-

tion used in asymptotic theory for plug-in estimators (e.g., Newey, 1994, Assumption

5.1(ii)). Of course, asymptotics are only useful insofar as they deliver accurate approx-

imations to the finite-sample distribution of κ̂bc encountered in practice. In practical

terms, in any finite sample, this condition requires that γ̂ is within a vicinity of γ0

that is roughly double the order of sampling uncertainty. Indeed, the simulations

reported in Section 4 show that κ̂bc has negligible bias up to moderate amounts of

mismeasurement of ẽ (which translates to a range of ∥γ̂ − γ0∥) for a fixed sample

size T . We also note that γ̂ = γ(θ̂, ẽ), where θ̂ is estimated on the choice data and ẽ

can be computed using fine tuning on the same choice data. For these reasons, it is

plausible to adopt an asymptotic framework in which γ̂ approaches γ0 as the sample

size T increases.

We next provide a sense in which κ̂bc is efficient. The proof of Proposition 1 shows
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that κ̂bc belongs to the class K of estimators κ̂ of κ0 that satisfy

√
T (κ̂− κ0) =

1√
T

T∑
t=1

(
kt(γ0)− κ0 − c′Ztξ̂t(γ0)

)
+
√
T

τ∑
t=1

d′t (m̄t −mt(γ0)) + op(1), (32)

where c and d1, . . . , dτ are any M-measurable random vectors that satisfy

E[k̇t(γ0)]−G′c−
τ∑
t=1

M ′
tdt = 0, (33)

(almost surely). For instance, similar arguments as in the proof of Proposition 1

show that any κ̂ obtained by plugging-in any γ̂ = γ0 + op(T
−1/4) into (10) for some

arbitrary weights ĉ and d̂1, . . . , d̂τ converging to c and d1, . . . , dτ belongs to this class.

Condition (33) typically ensures that such an estimator satisfies (32) uniformly for

γ local to γ0. In general, there are many different weights ĉ and d̂1, . . . , d̂τ whose

probability limits c and d1, . . . , dτ will correspond to different (random) asymptotic

variances. The following result shows that κ̂bc has the smallest asymptotic variance

among this class of estimators of κ0.

Proposition 2. Let Assumption 1 hold and γ̂ = γ0 + op(T
−1/4). Then κ̂bc has the

smallest asymptotic variance among the class of estimators K of κ0.

An important practical take-away from Proposition 2 is that microdata should be

used, when available, to improve the efficiency of estimators of counterfactuals. Any

estimator that discards the microdata by implicitly setting d1, . . . , dτ = 0 will have

an unnecessarily large variance (and hence standard errors).

Of course, in many scenarios microdata may not be available. Here we state a

simpler version of Proposition 1 tailored to this case. Recall that the bias-corrected

estimator in this case is given in (11), where ĉ is given in (13) with Ĥ = Ĝ′V̂ −1Ĝ. To

introduce the assumptions, let V and G be as above, and let H = G′V −1G.

Assumption 2. Let the following hold:

(i) kt(·) and Ztξ̂t(·) are twice continuously differentiable in γ on N (almost surely),

and the functions and all elements of their first and second derivatives are
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uniformly (for γ ∈ N) bounded by a random variable Dt with finite fourth

moment;

(ii) V and H are positive definite.

The next result is a special case of Proposition 1 and is stated without proof.

Proposition 3. Let Assumption 3 hold and γ̂ = γ0 + op(T
−1/4). Then,

√
T (κ̂bc − κ0) →d N(0, Vbc)

with Vbc as in (31) with H = G′V −1G.

The asymptotic variance can be easily estimated using the formula V̂bc in (16).

Standard errors are then computed as

√
V̂bc/T . These are consistent under the con-

ditions of Proposition 3.

6.1.2 Theory for LM1

We now present a result that provides a formal sense in which the diagnostic LM1

in (17) behaves like ∥
√
T (γ̂ − γ0)∥2 as the sample size grows large. We first state the

result then discuss its implications. In what follows, we abbreviate “with probability

approaching one” to “wpa1.” Recall H from (30) and let λmin(H) denote its smallest

singular value, which is uniformly bounded away from zero by Assumption 1(iii).

Proposition 4. Let Assumption 1 hold and let γ̂ = γ0 + op(1). Fix any sequence

CT ↑ ∞ and any ϵ > 0. Then wpa1, we have

1 + ϵ

1 + 2ϵ

(√
LM1 − ϵCT

)
≤ ∥H1/2(

√
T (γ̂ − γ0))∥ ≤ 1 + 2ϵ

1 + ϵ

(√
LM1 + ϵCT

)
.

In particular, wpa1 we have that LM1 ≤ C2
T implies

∥
√
T (γ̂ − γ0)∥ ≤ (1 + 2ϵ)CT√

λmin(H)
.

Moreover, if γ̂ = γ0 + op(CT/
√
T ), then wpa1 we have

LM1 ≤ (1 + ϵ)2C2
T .
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Proposition 4 shows LM1 behaves like ∥
√
T (γ̂ − γ0)∥. With CT = o(T 1/4), wpa1

we have that LM1 ≤ C2
T implies ∥γ̂ − γ0∥ ≤ constant× CT/

√
T = o(T−1/4).

The proof of Proposition 4 shows that the “wpa1” qualifier depends on whether a

χ2
dim(γ) random variable is less than ϵ2C2

T . With ϵ = 1, say, this suggests taking C2
T to

be at least as large as the 95th or 99th percentile of the χ2
dim(γ) distribution. To check

a convergence rate of
√

(log T )/T , for instance, one could use C2
T = χ2

dim(γ),0.95 log T .

6.2 Case 2: Individual-Level Price Variation and Product

Fixed Effects

We again let Γ denote the set of all values of γ(θ, e) as θ varies over the parameter

space Θ and e varies over all J × r matrices with linearly independent rows, assume

e0 and ẽ are J × r with linearly independent rows, and that Γ is convex and open.

This is true for the γ(θ, e) given in Example 3, for which Γ is the product of copies

of R and (0,∞) and is therefore convex and open (see footnote 17). In Section 3, the

counterfactual function ki and choice probabilities σi depended on (θ, e) only through

the value of γ(θ, e). We therefore treat ki and σi as random functions on Γ.

6.2.1 Theory for Bias Correction

We now derive the theoretical properties of the bias-corrected estimator κ̂bc from (23).

We first outline some standard smoothness, moment, and rank assumptions. In what

follows, we use a dot (as above) and double dot to denote first and second derivatives

with respect to γ. Let H = E[σ̇i(γ0)′Vi(γ0)−1σ̇i(γ0)] and N be a neighborhood of γ0.

Assumption 3. Let the following hold:

(i) ki(·) and σi(·) are twice continuously differentiable in γ on N (almost surely),

and all elements of the functions and their first and second derivatives are

uniformly (for γ ∈ N) bounded by a random variable Di with finite second

moment;

(ii) σ̇i(·)′Vi(·)−1 is continuously differentiable (almost surely) and all elements of

the function and its derivative are uniformly (for γ ∈ N) bounded by a random

variable Di with finite higher-than-second moment;

(iii) H is positive definite.
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Let κ0 = E[ki(γ0)] denote the true value of the counterfactual. The following

result shows that the asymptotic distribution of κ̂bc is centered at κ0 and its variance

is independent of γ̂, θ̂, and ẽ.

Proposition 5. Let Assumption 3 hold and γ̂ = γ0 + op(n
−1/4). Then

√
n(κ̂bc − κ0) →d N(0, Vbc),

as n→ ∞, where

Vbc = Var
(
ki(γ0)

)
+ E[k̇i(γ0)]′H−1E[k̇i(γ0)]. (34)

The asymptotic variance Vbc can be easily estimated using V̂bc in (25). Standard

errors are then computed as

√
V̂bc/n. These are consistent under the conditions of

Proposition 5. We note that, as before, Proposition 5 requires that γ̂ be in a vicinity

of γ0, and refer the reader to Remark 8 for a discussion.

6.2.2 Theory for LM1

The following result is analogous to Proposition 4 and shows LM1 behaves like

∥
√
n(γ̂ − γ0)∥.

Proposition 6. Let Assumption 3 hold and let γ̂ = γ0 + op(1). Fix any sequence

Cn ↑ ∞ and any ϵ > 0. Then wpa1, we have

1 + ϵ

1 + 2ϵ

(√
LM1 − ϵCn

)
≤ ∥H1/2(

√
n(γ̂ − γ0))∥ ≤ 1 + 2ϵ

1 + ϵ

(√
LM1 + ϵCn

)
.

In particular, wpa1 we have that LM1 ≤ C2
n implies

∥
√
n(γ̂ − γ0)∥ ≤ (1 + 2ϵ)Cn√

λmin(H)
.

Moreover, if γ̂ = γ0 + op(Cn/
√
n), then wpa1 we have

LM1 ≤ (1 + ϵ)2C2
n.
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The implications of Proposition 6 are similar to before. In particular, for Cn =

o(n1/4), we have wpa1 that LM1 ≤ C2
n implies ∥γ̂ − γ0∥ ≤ constant × Cn/

√
n =

o(n−1/4). The proof of Proposition 6 shows that the “wpa1” qualifier depends on

whether a χ2
dim(γ) random variable is less than ϵ2C2

n. To check a convergence rate of√
(log n)/n, for instance, one could use something like C2

n = χ2
dim(γ),0.95 log n.

With some additional structure, we can also use LM1 to deduce a similar bound on

the proxies ẽ. To introduce the assumptions, let θ∗ and e∗ be such that γ(θ∗, e∗) = γ0.

We do not require that θ∗ and e∗ are the true structural parameters and attributes,

only that they induce γ0. Let Ĝθ = ∂γ(θ̂,ẽ)′

∂θ
, Ĝe =

∂γ(θ̂,ẽ)′

∂vec(e)
, Gθ = ∂γ(θ∗,e∗)′

∂θ
, and Ge =

∂γ(θ∗,e∗)′

∂vec(e)
(these are well defined under Assumption 4 below). Also let C(Gθ) denote

the column span of Gθ andM = I−H1/2G′
θ(GθHG

′
θ)

−1GθH
1/2 denote the projection

onto C(Gθ)
⊥.

Assumption 4. Let the following hold:

(i) θ̂ →p θ∗ and ẽ→p e∗ with γ0 = γ(θ∗, e∗);

(ii) γ(θ, e) is continuously differentiable in both its arguments at (θ∗, e∗) and Gθ has

full row rank;

(iii) θ̂ satisfies the first-order condition 0 = ĜθŜ and there exists a constant C such

that ∥θ̂ − θ∗∥ ≤ C∥ẽ− e∗∥ wpa1;

(iv) MH1/2G′
e has full rank.

Let σmin(MH1/2G′
e) denote the smallest singular value of the matrix MH1/2G′

e.

Note this is positive by Assumption 4(iv).

Proposition 7. Let Assumptions 3 and 4 bold hold. Fix any sequence Cn ↑ ∞ and

any ϵ > 0. Then wpa1, we have

1 + 3ϵ

1 + ϵ

(√
LM − ϵCn

)
≤ ∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥ ≤ 1 + 3ϵ

1 + ϵ

(√
LM + ϵCn

)
.

In particular, wpa1 we have that LM ≤ C2
n implies

∥
√
n(vec(ẽ− e∗))∥ ≤ (1 + 2ϵ)Cn

σmin(MH1/2G′
e)
.

The proof of Proposition 6 shows that the “wpa1” qualifier depends on whether a

χ2
rank(M) random variable is less than ϵ2C2

n. With ϵ = 1, say, this suggests taking C2
n

to be at least as large as the 95th or 99th percentile of the χ2
rank(M) distribution.
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7 Conclusion

In this paper, we develop a toolkit to correct bias and perform valid inference on

counterfactuals when the product attributes used in demand estimation may only

imperfectly capture the latent attributes that drive substitution. A leading case is

when consumer choice is driven by difficult-to-quantify characteristics and unstruc-

tured data, such as product images, descriptions, review text, or consumer surveys,

are converted into numerical variables using ML methods. As e-commerce continues

to expand and such data play an increasingly central role in driving consumer choices,

the need to incorporate these sources into demand estimation will only grow. In ad-

dition, our methods may be applied as simple post-estimation robustness checks even

with standard numeric attributes when mismeasurement is a concern. All our meth-

ods require minimal additional computation once model parameters are estimated

and can be easily integrated in the canonical demand estimation workflow.
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A Proofs

A.1 Proofs for Section 6.1

Proof of Proposition 1. We have γ̂ ∈ N wpa1 by the assumed consistency of γ̂. By

Assumption 1(i), wpa1 we may take a mean value expansion around γ0 to obtain

√
T (κ̂bc − κ0) =

1√
T

T∑
t=1

kt(γ0)− κ0 − c′Ztξ̂t(γ0) +
√
T

τ∑
t=1

d′t (m̄t −mt(γ0))

+
1√
T

T∑
t=1

(
(ĉ− c)′Ztξ̂t(γ0) +

τ∑
s=1

(d̂s − ds)
′ (m̄s −ms(γ0))

)

+
1√
T

T∑
t=1

(
k̇i(γ̃)

′ − ĉ′Ztξ̇t(γ̃)−
τ∑
s=1

d̂′sṁs(γ̃)

)
(γ̂ − γ0)

=: T1,T + T2,T + T3,T ,

where γ̃ is in the segment between γ̂ and γ0, and

c = V −1(K +GH−1h), dt = (rtVt)
−1MtH

−1h, t = 1, . . . , τ. (35)

Note that c and d1, . . . , dτ are well defined by virtue of Assumption 1(iii).

For T1,T , define the (dim(z)+1)×1 random vector ζt = (kt(γ0)−κ0, Ztξ̂t(γ0)). By
Theorem 2 of Hahn et al. (2022) (noting Assumptions 1(i)(ii) and independence within

and across markets are sufficient for their integrability and dependence conditions)

and Assumption 1(iv), for any M-measurable random vectors d1, . . . , dτ , we have(
1√
T

∑T
t=1 ζt∑τ

t=1 d
′
t

√
T (m̄t −mt(γ0))

)
→d

(
ZA

(
∑τ

t=1 rtd
′
tVtdt)

1/2ZM

)

M-stably, where the random vector ZA and random variable ZM are jointly normally

distributed and independent with mean zero, Var(ZA) = Var(ζt), and Var(ZM) = 1.

Moreover, (ZA, ZM) are independent of any M-measurable random variable. Hence,

the asymptotic distribution of T1,T is mixed Gaussian with mean zero and random

variance

Var (kt(γ0)) + c′V c− 2c′K +
τ∑
t=1

rtd
′
tVtdt.
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Substituting the above formulas for c and d1, . . . , dτ gives the form of the variance in

display (31). It remains to show that T2,T and T3,T are asymptotically negligible.

For term T2,T , first recall the expressions for ĥ and Ĥ in (12). Note that by

Assumption 1(i)(ii) and consistency of γ̂, we can deduce by standard arguments (e.g.,

Lemma 2.4 of Newey and McFadden (1994)) that k̂ →p E[k̇t(γ0)], K̂ →p K, Ĝ→p G,

and V̂ →p V . Hence, ĥ →p h by Assumption 1(iii) and Slutsky’s theorem. Note

that for each 1 ≤ t ≤ τ , the mit are iid conditional on M. It follows by Lemma 1 of

Andrews (2005) and Assumption 1(ii)(iv) that V̂t →p rtVt. Hence, V̂ −1
t →p (rtVt)

−1

for 1 ≤ t ≤ τ by Assumption 1(iii). Finally, Assumption 1(i) implies M̂t →p Mt for

1 ≤ t ≤ τ . Hence, Ĥ →p H and so Ĥ−1 →p H
−1, ĉ→p c, and d̂t →p dt for 1 ≤ t ≤ τ

by Assumption 1(iii) and Slutsky’s theorem.

Now write

T2,T = (ĉ− c)′
1√
T

T∑
t=1

Ztξ̂t(γ0) +
τ∑
t=1

√
T√
Nt

(d̂t − dt)
′
√
Nt (m̄t −mt(γ0))

=: T2,T,a + T2,T,b.

Term T2,T,a →p 0 because ĉ→p c and
1√
T

∑T
t=1 Ztξt(γ0) = Op(1) by Assumption 1(i).

Similarly, T2,T,b →p 0 because
√
T/Nt → rt ∈ (0,∞) by Assumption 1(iv), d̂t →p

dt, and
√
Nt(m̄t − mt(γ0)) converges in distribution M-stably to a mixed normal

limit with mean zero and variance Vt (by Assumption 1(ii)) and is therefore tight by

Assumption 1(ii).

For term T3,T , we first let mtl(γ) denote the l-th element of mt(γ), and let ρtl(γ)

denote the l-th element of Ztξ̂t(γ). Similarly, we let ĉl and d̂tl denote the l-th elements

of ĉ and d̂t. Then we may write

T3,T =
1√
T

T∑
t=1

k̇t(γ̃)′ − dim(z)∑
l=1

ĉlρ̇tl(γ̃)
′ −

τ∑
s=1

dim(m)∑
l=1

d̂slṁsl(γ̃)
′

 (γ̂ − γ0).

By construction, ĉ and d̂1, . . . , d̂τ satisfy the in-sample orthogonality condition

k̂ − Ĝ′ĉ−
τ∑
s=1

M̂ ′
sd̂s = 0, (36)

wpa1. By Assumption 1(i) we may take a second mean-value expansion, this time of
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γ̃ around γ̂, to arrive at

T3,T =
1√
T

T∑
t=1

k̇t(γ̂)′ − dim(z)∑
l=1

ĉlρ̇tl(γ̂)
′ −

τ∑
s=1

dim(m)∑
l=1

d̂slṁsl(γ̂)
′

 (γ̂ − γ0)

+ T 1/4(γ̃ − γ̂)′

 1

T

T∑
t=1

k̈t(γ̌)− dim(z)∑
l=1

ĉlρ̈tl(γ̌)−
τ∑
s=1

dim(m)∑
l=1

d̂slm̈sl(γ̌)

T 1/4(γ̂ − γ0)

=: T3,T,a + T3,T,b,

wpa1, where γ̌ is in the segment between γ̂ and γ̃, k̈t(γ) =
∂2kt(γ)
∂γ∂γ′

, ρ̈tl(γ) =
∂2ρtl(γ)
∂γ∂γ′

,

and m̈tl(γ) =
∂2mtl(γ)
∂γ∂γ′

.

We have

T3,T,a =

(
k̂ − Ĝ′ĉ−

τ∑
s=1

M̂ ′
sd̂s

)
√
T (γ̂ − γ0) = 0

wpa1 by the in-sample orthogonality condition (36).

To show T3,T,b →p 0, in view of the condition γ̂ = γ0 + op(T
−1/4), it is enough

to show that the central term in parentheses is Op(1). To this end, standard argu-

ments (e.g., Lemma 2.4 of Newey and McFadden (1994)) using Assumption 1(i) and

consistency of γ̂ yield 1
T

∑T
t=1 k̈t(γ̌) →p E[k̈t(γ0)] and 1

T

∑T
t=1 ρ̈tl(γ̌) →p E[ρ̈tl(γ0)],

both of which are finite. It also follows by the fact that d̂t →p dt for 1 ≤ t ≤ τ ,

Assumption 1(i), and consistency of γ̂ that d̂slm̈sl(γ̌) →p dslm̈sl(γ0) for 1 ≤ s ≤ τ

and 1 ≤ l ≤ L. Finally, Assumption 1(i)-(iii) implies c and d1, . . . , dτ are tight.

Proof of Proposition 2. Arguing as in the proof of Proposition 1, the asymptotic dis-

tribution of any estimator of the form (32) is mixed Gaussian with mean zero and

variance

Var (kt(γ0)) + c′V c− 2c′K +
τ∑
t=1

rtd
′
tVtdt.

Conditioning onM, we may minimize this expression with respect to the vectors c and

d1, . . . , dτ subject to (33) to obtain the weights c and d1, . . . , dτ in (35). Substituting

into the above display yields the minimum variance Vbc given in (31).

Before proving Proposition 4, we first state and prove a lemma.
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Lemma 1. Let Assumption 1 hold and let γ̂ = γ0 + op(1). Then

√
T Ŝ = ZT + op(1) + (H + op(1))(

√
T (γ̂ − γ0)),

where ZT := G′V −1 1√
T

∑T
t=1 Ztξ̂t(γ0) +

∑τ
t=1M

′
t(rtVt)

−1
√
T (mt(γ0) − m̄t) converges

in distribution (M-stably) to a mixed Gaussian random variable with mean zero and

M-measurable variance H.

Proof of Lemma 1. By definition of Ŝ, we have

√
T Ŝ = Ĝ′V̂ −1 1√

T

T∑
t=1

Ztξ̂t(γ0) +
τ∑
t=1

M̂ ′
tV̂

−1
t

√
T (mt(γ0)− m̄t)

+ Ĝ′V̂ −1

(
1√
T

T∑
t=1

Zt(ξ̂t(γ̂)− ξ̂t(γ0))

)

+
τ∑
t=1

M̂tV̂
−1
t

√
T (mt(γ̂)−mt(γ0)) =: T1,T + T2,T + T3,T + T4,T ,

where Ĝ →p G, M̂t →p Mt for 1 ≤ t ≤ τ , V̂ −1 →p V
−1, and V̂ −1

t →p (rtVt)
−1 for

1 ≤ t ≤ τ (all by the proof of Proposition 1).

For T1,2 and T2,T , we have by the proof of Proposition 1 that 1√
T

∑T
t=1 Ztξ̂t(γ0)

and
√
Nt(mt(γ0)− m̄t), 1 ≤ t ≤ τ , are all Op(1). It follows by Assumption 1(iv) that

T1,T+T2,T = ZT+op(1). Hence, by similar arguments to the proof of Proposition 1 we

may invoke Theorem 2 of Hahn et al. (2022) to conclude that ZT converges M-stably

to a mixed Gaussian limit with mean zero and variance H.

For T3,T and T4,T , a mean-value expansion in γ̂ around γ0 yields

T3,T = Ĝ′V̂ −1

(
1

T

T∑
t=1

Ztξ̇t(γ̃)

)
√
T (γ̂ − γ0), T4,T =

τ∑
t=1

M̂tV̂
−1
t ṁt(γ̃)

′
√
T (γ̂ − γ0),

for γ̃ in the segment between γ̂ and γ0. It follows by Assumption 1(i) and standard

arguments that 1
T

∑T
t=1 Ztξ̇t(γ̃) →p G and ṁt(γ̃) →p Mt, 1 ≤ t ≤ τ . Hence, T3,T +

T4,T = (H + op(1))
√
T (γ̂ − γ0).

Proof of Proposition 4. The proof of Proposition 1 shows that Ĥ →p H. Combined
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with Lemma 1 and the triangle inequality, we have

∥(H1/2 + op(1))(
√
T (γ̂ − γ0))∥+ ∥(H−1/2 + op(1))(ZT + op(1))∥

≥
√
LM1 ≥ ∥(H1/2 + op(1))(

√
T (γ̂ − γ0))∥ − ∥(H−1/2 + op(1))(ZT + op(1))∥.

As ∥(H−1/2 + op(1))(ZT + op(1))∥2 →d χ
2
dim(γ) by the proof of Lemma 1, we have

∥(H−1/2 + op(1))(ZT + op(1))∥ ≤ ϵCT

wpa1. Moreover, we have that

1 + 2ϵ

1 + ϵ
∥H1/2(

√
T (γ̂−γ0))∥ ≥ ∥(H1/2+op(1))(

√
T (γ̂−γ0))∥ ≥ 1 + ϵ

1 + 2ϵ
∥H1/2(

√
T (γ̂−γ0))∥

wpa1. The first result follows by combining the above three displays and rearranging.

The second and third results are implications of the first.

A.2 Proofs for Section 6.2

Proof of Proposition 5. Let c′i = (E[k̇i(γ0)])′H−1σ̇i(γ0)
′Vi(γ0)

−1 denote the population

counterpart of ĉ′i. We have γ̂ ∈ N wpa1 by consistency of γ̂. Hence, wpa1, we may

take a mean value expansion around γ0 to obtain

√
n(κ̂bc − κ0) =

1√
n

n∑
i=1

ki(γ0)− κ0 + c′i(di − σi(γ0))

+
1√
n

n∑
i=1

(ĉi − ci)
′(di − σi(γ0))

+
1√
n

n∑
i=1

(
k̇i(γ̃)

′ − ĉ′iσ̇i(γ̃)
)
(γ̂ − γ0)

=: T1,n + T2,n + T3,n,

where γ̃ is in the segment between γ̂ and γ0. This expansion is valid by Assump-

tion 3(i). Term T1,n is asymptotically N(0, Vbc). It remains to show that T2,n and T3,n

are both asymptotically negligible.
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For T2,n, first define the 1× dim(γ) vectors

â = k̄′Ĥ−1, a = E[k̇i(γ0)]′H−1,

where k̄ = 1
n

∑n
i=1 k̇i(γ̂). Also define the dim(γ) × J random element bi(γ) =

σ̇i(γ)
′Vi(γ)

−1, and let ei = di − σi(γ0), which is J × 1. Then we may write

T2,n = â

(
1√
n

n∑
i=1

(bi(γ̂)− bi(γ0))ei

)
+ (â− a)

(
1√
n

n∑
i=1

bi(γ0)ei

)
=: T2,n,a + T2,n,b.

By Assumptions 3(i)(ii) and consistency of γ̂, it follows by standard arguments

(e.g., Newey and McFadden, 1994, Lemma 2.4) that k̄ →p E[k̇i(γ0)] and Ĥ →p H.

Hence, â→p a by Assumption 3(iii).

To show T2,n,a →p 0, first note that â = Op(1) and E[bi(γ)ei] = 0. Consider

the empirical process νn(γ) = 1√
n

∑n
i=1 bi(γ)ei defined for γ ∈ N . For γ1, γ2 ∈ N ,

we have by a mean-value expansion that bi(γ1)ei − bi(γ2)ei = (γ1 − γ2)
′ḃi(γ̃)ei for γ̃

in the segment between γ1 and γ2 (with possibly different values for each element),

where ḃi(γ)ei =
∂
∂γ
(ḃi(γ̃)ei)

′. This expansion is valid in view of Assumption 3(ii).

The elements of ei are bounded by ±1 and the elements of ḃi(γ) are uniformly (for

γ ∈ N) bounded by some random variable with finite second moment, again by

Assumption 3(ii). Hence, ∥bi(γ1)ei − bi(γ2)ei∥ ≤ Bi∥γ1 − γ2∥ for γ1, γ2 ∈ N , for some

random variable Bi with finite second moment. Thus, {bi(γ)ei : γ ∈ N} is a type-

II class of Andrews (1994b). It follows by Theorems 1 and 2 of Andrews (1994b)

(using Assumption 3(ii) to verify the moment condition on the envelope function)

that νn(·) is stochastically equicontinuous. Also note by the Lipschitz condition the

pseudometric corresponding to this process is dominated by the Euclidean metric.

Hence, by consistency of γ̂ we have 1√
n

∑n
i=1(bi(γ̂)− bi(γ0))ei →p 0.

To show T2,n,b →p 0, first note â→p a. Moreover, E[∥bi(γ0)ei∥2] <∞ by Assump-

tion 3(ii) and E[bi(γ0)ei] = 0, so 1√
n

∑n
i=1 bi(γ0)ei = Op(1) by Chebyshev’s inequality.

For term T3,n, we first write

T3,n =
1√
n

n∑
i=1

(
k̇i(γ̃)

′ −
J∑
j=1

ĉijσ̇ij(γ̃)
′

)
(γ̂ − γ0),
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where ĉi = (ĉi1, . . . , ĉiJ), and σ̇ij(γ) =
∂σij(γ)

∂γ
. Note by construction that ĉi satisfies

the in-sample orthogonality condition

1

n

n∑
i=1

k̇i(γ̂)− σ̇i(γ̂)
′ĉi = 0. (37)

A second mean-value expansion, this time of γ̃ around γ̂, yields

T3,n =
1√
n

n∑
i=1

(
k̇i(γ̂)

′ − ĉ′iσ̇i(γ̂)
)
(γ̂ − γ0)

+ n1/4(γ̃ − γ̂)′

(
1

n

n∑
i=1

(
k̈i(γ̌)−

J∑
j=1

ĉijσ̈ij(γ̌)

))
n1/4(γ̂ − γ0)

=: T3,n,a + T3,n,b,

where γ̌ is in the segment between γ̂ and γ̃, k̈i(γ) =
∂2ki(γ)
∂γ∂γ′

, and σ̈ij(γ) =
∂2σij(γ)

∂γ∂γ′
. We

have T3,n,a = 0 by the in-sample orthogonality condition (37).

To show T3,n,b →p 0, in view of the condition γ̂ = γ0 + op(n
−1/4), it is enough to

show that the central term in parentheses is Op(1). To this end, standard arguments

(e.g., Newey and McFadden, 1994, Lemma 2.4) using Assumption 3(i) and consistency

of γ̂ yield 1
n

∑n
i=1 k̈i(γ̌) →p E[k̈i(γ0)], which is finite. We may similarly deduce by the

fact that â →p a and Assumption 3(i)-(iii) that 1
n

∑n
i=1 ĉijσ̈ij(γ̌) → E[cijσ̈ij(γ0)],

which is finite, for j = 1, . . . , J .

Proof of Proposition 6. Analogous to the proof of Proposition 4, using Lemma 2 be-

low in place of Lemma 1.

Lemma 2. Let Assumption 3 hold and let γ̂ = γ0 + op(1). Then

√
nŜ = Zn + op(1)− (H + op(1))(

√
n(γ̂ − γ0)),

where Zn := 1√
n

∑n
i=1 σ̇i(γ0)

′Vi(γ0)
−1(di − σi(γ0)) →d N(0, H).

Proof of Lemma 2. First note that since
∑J

j=0 σ̇ij(γ) = 0 for all γ ∈ Γ, we may write

√
nŜ =

1√
n

n∑
i=1

J∑
j=0

dij − σij(γ0)

σij(γ̂)
σ̇ij(γ̂) +

1√
n

n∑
i=1

J∑
j=0

σij(γ0)− σij(γ̂)

σij(γ̂)
σ̇ij(γ̂)

=: T1,n + T2,n.
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For T1,n, we may rewrite this term using the notation from the proof of Proposi-

tion 5 as

T1,n =
1√
n

n∑
i=1

bi(γ0)ei +
1√
n

n∑
i=1

(bi(γ̂)− bi(γ0)) ei

=: T1,n,a + T1,n,b

where bi(γ) = σ̇i(γ)
′Vi(γ)

−1 and ei = di − σi(γ0). The summands in T1,n,a have

mean zero and variance H, which is finite and non-singular by Assumption 3(iii).

Hence, T1,n,a →d N(0, H). The proof of Proposition 5 shows that the empirical

process νn(γ) =
1√
n

∑n
i=1 bi(γ)ei defined for γ ∈ N , a suitable neighborhood of γ0, is

stochastically equicontinuous under Assumption 3(ii). Hence, T1,n,b →p 0.

For T2,n, a mean-value expansion in γ0 around γ̂ yields

T2,n =

(
1

n

n∑
i=1

J∑
j=0

σ̇ij(γ̂)σ̇ij(γ̃)
′

σij(γ̂)

)
√
n(γ0 − γ̂),

for γ̃ in the segment between γ0 and γ̂ (with possibly different values for each element).

This expansion is valid in view of Assumption 3(i). For the term in parentheses, note

1

n

n∑
i=1

J∑
j=0

σ̇ij(γ̂)σ̇ij(γ̃)
′

σij(γ̂)
=

1

n

n∑
i=1

σ̇i(γ̂)
′Vi(γ̂)

−1σ̇i(γ̃).

Standard arguments (e.g., Lemma 2.4 of Newey and McFadden (1994)) then yield

that 1
n

∑n
i=1 σ̇i(γ̂)

′Vi(γ̂)
−1σ̇i(γ̃) →p H under Assumption 3(i)(ii).

Proof of Proposition 7. First note that Assumption 4(i)(ii) implies γ̂ →p γ0. More-

over, Ĥ →p H by the proof of Proposition 5, H is positive definite by Assump-

tion 3(iii), and Ĝθ →p Gθ by Assumption 4(i)(ii). It follows by Assumption 4(ii) that

M̂ = I − Ĥ1/2Ĝ′
θ(ĜθĤĜ

′
θ)

−1ĜθĤ
1/2 exists wpa1 and M̂ →p M . Now by Assump-

tion 4(iii) and Lemma 2,

√
nŜ =

√
nM̂Ĥ−1/2Ŝ = M̂Ĥ−1/2(Zn + op(1))− M̂Ĥ−1/2(H + op(1))(

√
n(γ̂ − γ0)),

where M̂ = I − Ĥ1/2Ĝ′
θ(ĜθĤĜ

′
θ)

−1ĜθĤ
1/2. Hence,

√
nŜ = (M + op(1))(H

−1/2Zn + op(1))− (MH1/2 + op(1))(
√
n(γ̂ − γ0)).
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A mean-value expansion of γ̂ around (θ∗, e∗) yields

√
n(γ̂ − γ0) = (G′

θ + op(1))
√
n(θ̂ − θ∗) + (G′

e + op(1))
√
n(vec(ẽ− e∗)).

Since MH1/2G′
θ = 0, we have by Assumption 4(iii)(iv) that

∥(MH1/2 + op(1))(G
′
θ + op(1))

√
n(θ̂ − θ∗)∥ ≤ ϵ

1 + 3ϵ
∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥

wpa1. Moreover,

1 + 2ϵ

1 + 3ϵ
∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥

≤ ∥(MH1/2 + op(1))(G
′
e + op(1))

√
n(vec(ẽ− e∗))∥

≤ 1 + 2ϵ

1 + ϵ
∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥

wpa1. We also have ∥MH−1/2Zn∥2 →d χ
2
rank(M) by Lemma 2, which implies that the

inequality ∥(M + op(1))(H
−1/2Zn + op(1))∥ ≤ ϵCn holds wpa1. Hence, wpa1,

1 + 3ϵ

1 + ϵ
∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥+ ϵCn

≥
√
LM1 ≥

1 + ϵ

1 + 3ϵ
∥MH1/2G′

e

√
n(vec(ẽ− e∗))∥ − ϵCn.

The first result follows by rearranging. The second is an immediate implication.

B Additional Results for Section 5

Figures 5 and 6 plot the LM1 and LM2 diagnostics, respectively, for each specification.

C Reparameterization for Micro BLP

Consider Example 2. We partition βi = (βx̄,i, βe,i) and Π = [Πx̄ Πe Πp], and write the

utilities as:

uijt = β′
x̄,ix̄jt+β

′
e,iej−αipjt+(x̄jt, pjt)

′[Πx̄ Πp]yit+e
′
jΠeyit+π

′ȳijt+ξjt+εijt, j ∈ Jt.

53



Figure 5: LM1 diagnostic in empirical application

Note: Each bar shows the value of the LM1 statistic for the corresponding specification.

Figure 6: LM2 diagnostic in empirical application

Note: Each bar shows the value of the LM2 statistic for the corresponding specification.
The horizontal segments show the associated critical values.
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Suppose αi ∼ N(ᾱ, σ2
α), βx̄,i ∼ N(β̄x̄,Σx̄), βe,i ∼ N(β̄e,Σe), and αi, βx̄,i and βe,i are

independent. Then,

θ =
(
ᾱ, σα, β̄x̄, β̄e, π, v(Πx̄), v(Πp), v(Πe), l(Σx̄), l(Σe)

)
,

where we use the same notation v and l as for Examples 1 and 3.18 Note that ej only

enters via β′
e,iej and e′jΠeyit. As before, collecting β′

e,iej across products, we have

eβe,i ∼ N(eβ̄e, eΣee
′), where eΣee

′ has rank r ≤ J because e is J × r. Hence,

γ(θ, e) =
(
ᾱ, σα, β̄x̄, eβ̄e, π, v(Πx̄), v(Πp), v(eΠe), l(Σx̄), lr(eΣee

′)
)
,

with lr as in Examples 1 and 3.

18As with Example 1, if Σx̄ and/or Σe are diagonal, then we replace l(Σx̄) and/or l(Σe) with
vectors containing their diagonal entries.
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