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1 Introduction

A large literature in marketing and economics documents that consumers are often imperfectly informed

about the attributes of relevant products in ways that substantially alter their choices (see Honka,

Hortaçsu, and Wildenbeest (2019) for a review). This pattern is found for relatively inexpensive items

like groceries, as well as big-ticket and consequential purchases, such as cars, insurance and schooling

(e.g., Bronnenberg and Vanhonacker (1996), Abaluck and Gruber (2011), Woodward and Hall (2012),

Bronnenberg, Kim, and Mela (2016), Allcott, Lockwood, and Taubinsky (2019)). Given this, models

that assume full information may generate wrong conclusions about welfare and—by construction—

cannot be used to assess how consumers would respond to an information intervention.

In this paper, we state what we believe to be plausible sufficient conditions under which choice

data alone suffices to recover preferences even if consumers are partially informed. In our baseline

model, we assume that if consumers search, they do so in decreasing order of expected utility — a

condition we make precise below. We show that if this condition is satisfied, along with a few additional

restrictions we describe below, there is a function of choice probabilities which recovers preferences

whether consumers are fully or partially informed. Our approach does not require the researcher

to fully specify a structural search model beyond the expected utility assumption. Specifically, the

expected utility assumption allows for a broad class of search models, including versions of classic

sequential search (Weitzman 1979), the “directed cognition” model of Gabaix, Laibson, Moloche, and

Weinberg (2006), or heuristic rules such as satisficing (Simon 1955) and simultaneously searching all

goods with expected utility above a threshold.1

Recovering preferences under partial information has many applications. First, one can forecast the

impact of informing consumers about attributes of goods prior to conducting such interventions, and

compute the associated welfare benefits.2 Second, our approach can inform firms’ advertising strategies

and the interface design of online platforms (e.g., by identifying product attributes that consumers care

about but might not be currently aware of).3 Third, in settings where one would otherwise assume

full information, the expected utility assumption provides a generalization which allows for both full

and partial information, thus permitting a more reliable normative evaluation of choices.4 Finally,

given preferences recovered by our approach, we show that it is possible to identify other primitives of

1The empirical literature suggests that canonical assumptions in all of these cases are often rejected by the data
(Schwartz et al. (2002), Gabaix et al. (2006), Honka and Chintagunta (2017), Jindal and Aribarg (2018) in our four
examples), limiting the applicability of fully specified search models.

2If an information intervention also reduces search costs, then the welfare gains from better choices can be viewed as
a lower bound to the total increase in welfare.

3This is related to the literature on advertising content (e.g., Anderson, Ciliberto, and Liaukonyte (2013)).

4For example, when quantifying the gains from improving school quality (as measured by test scores), willingness
to pay from actual choices may understate willingness to pay for parents who observe quality (Hastings and Weinstein
2008).
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interest such as the distribution of search costs under a maintained model of search.

One can think of our approach as a data-driven method of isolating consumers who maximize

utility. Consider the example of consumers shopping for laptops on an e-commerce platform. Some

product information (e.g., price) is immediately visible on the results page, while other attributes (e.g.,

shipping speed) are relegated to the product page and require some time and effort to be uncovered;

we refer to these attributes as hidden. Consumers may fail to maximize utility if they do not pay

the cost to learn shipping speed for all products. Our expected utility assumption states that if you

bother to check the shipping speed for a given laptop, you will first do so for any other laptop in the

choice set that appears more promising to you based on the information immediately visible on the

results page. This assumption implies that consumers who search the laptop with the best shipping

speed always choose the product that maximizes utility among all options (which is not necessarily that

with the best shipping speed). To see this, note that if some other laptop has higher utility than that

with the best shipping speed, it must have higher expected utility and thus our assumption implies

that it is searched and then chosen by the consumer. Further, only consumers who search the laptop

with the best shipping speed are sensitive to shipping speed for that laptop. Therefore, by looking

at the sensitivity of choices to the shipping speed of the laptop with the best shipping speed we are

able to isolate consumers that behave as if they were fully informed; standard arguments for the full

information case then recover their preferences.

Based on this argument, we show that a specific ratio of second derivatives of choice probabilities

identifies preferences given partial information. Standard methods, based on ratios of first derivatives,

could lead to attenuated estimates of preferences. In the above example, those approaches may erro-

neously conclude that consumers don’t care much about shipping speed when, in fact, they are simply

not aware that products differ along that dimension. Our second-derivative ratio recovers preferences

even with partial information, and it also recovers preferences in the full information case. Thus, it

provides robust estimation whether consumers are fully or partially informed. Further, we extend our

model in several empirically relevant directions, including cases where the expected utility assumption

is not satisfied. Specifically, we consider extensions where (i) search costs vary with observables (e.g.,

rank on a webpage), (ii) search reveals information that is unobservable to the researcher, (iii) either

x or z is endogenous and valid instruments are available, and (iv) an outside option is available with

utility known prior to search.

Our identification proof lends itself naturally to estimation and testing. If one can nonparamet-

rically estimate choice probabilities as a function of product attributes, then our results can be used

to directly recover preferences (Compiani 2022). We also suggest an alternative more parsimonious

approach to estimate second derivatives that works well in simulations for larger numbers of goods.

Further, one can use our result to test for full information by checking whether our “search-robust”

estimates of preferences are equal to the conventional estimates based on first derivatives. This implies

that one does not need to take an a priori stance on whether or not an attribute is uncovered only
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after searching a good. That hypothesis can be tested provided that the data contains at least one

attribute that can be assumed to be known by consumers pre-search.

We conduct two data analyses to validate the usefulness of our approach assuming homogeneous

preferences for product attributes. First, we show in a lab experiment involving e-book choice that

we can recover full-information preferences over hidden discounts using only data on observed choices.

Second, using data from hotel choice on Expedia, we show that our method correctly identifies as

“hidden” the one attribute not immediately visible in search results (hotel location).

While our approach gains generality in relaxing the assumption that consumers are perfectly in-

formed, it is comparatively data hungry, and it is potentially limited in the forms of heterogeneity

it can accommodate. In particular, our main argument maintains that consumers have homogeneous

preferences for product attributes and thus assumes that individuals who search the good with the

highest value of the hidden attribute do not have systematically different preferences relative to the

rest of the population. We show that identification does not rely completely on the homogeneous pref-

erences assumption as our result can be extended to random coefficients models, provided we impose

the (potentially strong) restriction of monotonicity – i.e., that everyone either likes or does not like

the hidden attribute. Even with this identifying assumption, estimation of the random coefficients

distributions requires parametric restrictions or estimation of derivatives of order higher than two,

which may be infeasible in many applications given data limitations.

Estimation of our baseline model involves taking second-order derivatives of flexibly estimated

functions as well as evaluating those functions at specific points in their domains, which could lead to

slower-than-parametric convergence rates. Thus, we see it as most useful in settings with large data

sets. Example applications might include: consumer product choice, evaluating whether shoppers

are aware of per-unit prices when choosing among options of different sizes; school choice, evaluating

whether parents are informed about average test scores or dropout rates for alternative schools; health

plan choice, evaluating whether consumers are informed about plan network breadth; financial choice,

evaluating whether consumers are informed about attributes of loans — such as the term length —

that cannot be easily translated into dollar values; or housing choice, evaluating whether consumers

are informed about measurable attributes, such as the noise level in a particular location. In all

these cases, our model could also be used to test the impact of information interventions aimed at

raising awareness of particular attributes. Of course, the limitations of our assumptions also apply:

for example, we might think it plausible that all students prefer schools with lower dropout rates, but

some students might also prefer schools with lower test scores due to tracking considerations; if so, our

approach could give biased results for that variable.

Our result relates to several existing literatures. A theoretical and empirical literature models
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consumers as choosing from a possibly strict subset of the options available, their “consideration set.”5

Our model differs from much of the consideration set literature in that we consider the complementary

problem of imperfect information at the level of attributes rather than goods. Specifically, in our

setting, consumers are assumed to costlessly know some information for all goods, implying that, in

general, consumer behavior will be affected by the visible attributes of all products, even those that are

not searched.6 A growing literature, including Mehta, Rajiv, and Srinivasan (2003), Kim, Albuquerque,

and Bronnenberg (2010), Honka and Chintagunta (2017), Kim, Albuquerque, and Bronnenberg (2017),

Ursu (2018) and Gardete and Hunter (2020), models consumers as searching products in order to

uncover some of their attributes. We show that preferences can be recovered under our assumptions

without committing to one specific structural search model.7 This is similar in spirit to Compiani,

Lewis, Peng, and Wang (2024), who study optimal rankings of products on e-commerce platforms;

their model maintains the assumption of sequential search but is flexible as to what components

of utility consumers learn via search. Another related literature studies whether consumers make

informed choices by comparing the choices of regular consumers to that of a more informed subgroup.

Bronnenberg, Dubé, Gentzkow, and Shapiro (2015) ask whether pharmacists make similar prescription

drug choices to consumers, Handel and Kolstad (2015) ask whether better informed consumers make

different health insurance choices, and Johnson and Rehavi (2016) study whether physicians treat

differently when their patients are other physicians. Rather than identifying informed consumers, our

paper develops a data-driven way of identifying consumers who maximize utility (despite not necessarily

searching all goods) and whose choices can thus be used to recover preferences.

The rest of the paper is organized as follows. Section 2 lays out our formal framework and proves

our key identification results, Section 3 considers several empirically important extensions such as

endogenous attributes, Section 4 discusses the model assumptions and their testability, and the (coun-

5Roberts and Lattin (1991), Goeree (2008), Conlon and Mortimer (2013) and Gaynor, Propper, and Seiler (2016)
— among others — estimate preferences when consumers may only consider some alternatives. Manzini and Mariotti
(2014) establish that one can recover consideration probabilities as well as preferences if the data contains choices from
every possible subset of the feasible set of goods. Abaluck and Adams (2017) show that identification can be achieved
even without this type of variation under certain models of consideration set formation. Cattaneo, Ma, Masatlioglu, and
Suleymanov (2020) and Barseghyan, Coughlin, Molinari, and Teitelbaum (2021) study partial identification of a general
model with heterogeneous consideration sets. Agarwal and Somaini (2022) propose a model in which consumers choose
from choice sets that are unobserved to the researcher due to information frictions or supply-side rationing, and show how
instrumental variables enable identification of preferences as well as the rule determining which products are included in
the choice set.

6The recent theoretical literature on this question includes Branco, Sun, and Villas-Boas (2012), Ke, Shen, and
Villas-Boas (2016) and Gabaix (2019).

7In this sense, our paper is also related to the literature on “attribute non-attendance.” There is one special case
where the problem of imperfect information about attributes has been often addressed in the existing literature. This
is the case in which all attributes can be expressed in dollar terms. For example, consumers should not care whether a
health insurance plan saves them $100 in premiums or out of pocket costs (see Abaluck and Gruber (2011)), or whether
a light bulb saves them money in upfront costs or shelf life (as in Allcott and Taubinsky (2015)). If one dollar-equivalent
attribute is assumed to be visible to consumers, it can provide a benchmark for how consumers should respond to a
hidden dollar-equivalent attribute. However, in many cases, attributes cannot easily be translated into dollars without
first estimating consumer preferences. In these cases, our results still allow one to recover preferences given imperfectly
informed consumers.
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terfactual) questions that can be addressed using our approach, Section 5 provides details of estimation,

Section 6 offers a guide to practitioners, Sections 7 and 8 report results from our experiment and Ex-

pedia application, respectively, and Section 9 concludes.

2 Model and Identification

2.1 Setup

There are J ≥ 2 goods indexed by j = 1, ..., J with attributes xj observed by consumers and the

econometrician and an attribute zj observed by the econometrician but not necessarily by consumers.8

In order to focus on the intuition underlying our key results, we make five simplifying assumptions in

our exposition here. First, we let xj be scalar for all j; our results immediately extend to the case of

vector-valued xj ’s at the cost of some extra notation. Second, we focus on the case where zj is also

a scalar; we consider the case with multivariate zj in Appendix A.3. Third, we assume that xj and

zj are continuously distributed (Appendix A.8 shows that an analogous argument applies to the case

with discrete attributes provided that at least one attribute is continuous). Fourth, we assume that

the utility that individual i derives from good j is linear in xj , zj and an idiosyncratic shock ϵij that

is observed by consumers prior to search (we consider in Appendix A.6 the case where unobservables

are seen only after search). Fifth, we focus on the case where both xj and zj are exogenous (Section

3.1 discusses how to deal with endogeneity). We formalize these assumptions as follows.

Assumption 1. The utility that individual i derives from good j is Uij = αxj +βzj + ϵij , where xj , zj

are continuous scalars, and x = (x1, . . . , xJ) and z = (z1, . . . , zJ) are independent of ϵi = (ϵi1, . . . , ϵiJ).

The consumer observes xj , ϵij for all j prior to search, but needs to search good j to uncover zj .

We assume that consumers form expectations on zj based on xj : E(zj |xj) = γ0 + γ1xj . Then, the

expected utility from good j before engaging in search takes the form EUij = βγ0 + (α+ βγ1)xj + ϵij .

This nests the case where consumers have (linear) rational expectations as well as the case where they do

not update at all about zj based on observed attributes of goods (γ1 = 0). We let z̃j ≡ zj− (γ0 + γ1xj)

be the surprise utility revealed by searching j relative to consumers’ expectations.

Next, we state the assumptions that characterize the class of search models we consider.

Assumption 2. (i) Consumer i searches goods in decreasing order of EUij .

(ii) Conditional on having utility ū in hand (i.e., having uncovered a maximum utility ū in the

search process so far), consumer i searches j if and only if gi(xj , ϵij , ū) ≥ 0 where gi is a decreasing

8Our model also permits the more general case where attributes are potentially both good and individual-specific,
but we write xj and zj rather than xij and zij for notational simplicity.
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function of ū.9

(iii) Consumers choose the good which maximizes utility among searched goods.

(iv) Only the value of zj is unknown to consumers prior to search, and search fully reveals zj .

We discuss these conditions at length in Section 4.1. To briefly clarify, Assumption 2(i) states

that consumers search goods in descending order of expected utility prior to search. Assumption 2(ii)

states that consumers decide whether or not to search a good based on their utility in hand and the

the information they have available about the good they are considering searching — i.e., (xj , ϵij).

This rules out, for example, a sequential search protocol whereby one stops searching after discovering

a good with large z irrespective of utility in hand.10 We subscript the function g by i to emphasize

that the function may depend on any individual (unobserved) heterogeneity in utility or search. For

example, in a Weitzman search model, the stopping rule would depend on consumer i’s reservation

value, which in turn depends on i’s search cost. Assumption 2(iii) states that consumers must search a

good before choosing it. Assumption 2(iv) states that the econometrician observes all the information

which is revealed by search, and that search is fully informative about the hidden attribute.

We pause here to highlight that Assumption 2 accommodates several commonly used models of

search.

Example 1 (Sequential Search). Suppose that consumers search sequentially and consumer i must

pay a cost ci every time she uncovers the z attribute for a good. Further, assume that the consumer

believes that z̃ is distributed according to the prior Fz̃ i.i.d. across goods. Then, following Weitzman

(1979), the consumer will rank goods according to their reservation value rv′ij defined implicitly by

ci =

∫ ∞

rv′ij

(
u− rv′ij

)
dFUij |xj

(u) =

∫ ∞

rvi

β (t− rvi) dFz̃ (t) (1)

where rvi ≡
rv′ij−βγ0−(α+βγ1)xj−ϵij

β and the last step follows from a change of variable. We can interpret

rvi as the reservation value in units of z̃. To see this, note that consumer i searches goods in descending

order of βγ0 + (α + βγ1)xj + βrvi + ϵij (or, equivalently, of EUij = βγ0 + (α + βγ1)xj + ϵij) and for

each good j′, she chooses to uncover zj′ if and only if the maximum utility secured so far is lower than

βγ0 + (α + βγ1)xj′ + βrvi + ϵij′. Once she stops searching, she maximizes utility among the searched

goods. Thus, Assumption 2 is satisfied with gi (xj , ϵij , ū) = βγ0 + (α+ βγ1)xj + βrvi + ϵij − ū.

Example 2 (Directed Cognition Model). As in the model of Gabaix, Laibson, Moloche, and Weinberg

(2006), suppose that consumers rank goods in terms of expected utility and myopically check whether

9Assumption 2(ii) can be weakened to allow the function gi to depend on a good-specific unobservable, such as search
costs; however, good-specific search costs may lead to violations of Assumption 2(i). In Section 3.2, we extend our model
to permit search costs to vary across goods with observable factors.

10Assumption 2(ii) does accommodate simultaneous search models in which consumers decide which goods to uncover
based on expected utilities and then proceed to jointly search them. In this case, consumers don’t sequentially uncover
utilities and the function gi does not vary with its second argument.
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searching the next good is worth the cost. The directed cognition model has the same search order as

the Weitzman model but a different gi function; consumers myopically check whether gi (xj , ϵij , ū) =

Ez̃ max(Uij − ū, 0)− ci ≥ 0 to decide whether to search good j.

Example 3 (Satisficing). Suppose that consumer i searches in order of expected utility and stops

whenever utility in hand is above a threshold τi. Then, Assumption 2 is satisfied with gi (xj , ϵij , ū) =

τi − ū.

Example 4 (Full Information). The full information model is subsumed within the previous example

by letting τi = ∞ for all i.

Example 5 (Simultaneous Search). Suppose that consumer i simultaneously searches all goods that

have expected utility above a threshold τ̃i. Then, Assumption 2 is satisfied with gi (xj , ϵij , ū) = βγ0 +

(α+ βγ1)xj + ϵij − τ̃i.

Our results will not require the researcher to take a stand on the specific model of search that

consumers follow provided that our assumptions are met. Therefore, as illustrated by the examples

above, the approach will be agnostic as to whether consumers search sequentially or simultaneously,

are forward-looking or myopic and have biased or unbiased beliefs, among other things. In contrast,

fully specifying a structural model requires one to take a stance on each of these dimensions.

2.2 Identification

We assume throughout without loss that β > 0, i.e. we treat zj as an attribute that consumers value

in good j.11 Further, we let product 1 be the good with the highest value of z̃. In other words, good

1 delivers the largest positive surprise relative to consumers’ expectations. Note that z̃j collapses to

zj when γ1 = 0, i.e. when consumers do not form any expectations on z (so in the case of myopic

expectations, good 1 simply has the highest value of z). Here, we consider the case where the parameter

γ1 governing the way in which consumers form expectations is known to the researcher. For instance,

if consumers have rational expectations, γ1 can simply be estimated by regressing zj on xj . Knowledge

of γ1 implies knowledge of z̃j for all j, which means that the researcher knows the identity of good 1

in any given choice set. Section 3.5 considers the case where γ1 is unknown to the researcher.

We are now ready to state and prove a key lemma.

Lemma 1. Let Assumptions 1 and 2 hold. If consumer i searches good 1 (i.e., the good with the

highest value of z̃), then i chooses the utility-maximizing good.

11This is without loss, since Assumption 2 implies that an increase in Uij can only induce consumer i to switch from
not choosing j to choosing j, but never vice versa. (see footnote 32 for a formal argument). Thus, by the chain rule, the

sign of β is identified by the sign of
∂sj
∂zj

, where sj is the choice probability function for good j from the data.
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Proof. If good 1 is searched but utility is not maximized, then for some unsearched j, Uij > Ui1. Since

z̃1 ≥ z̃j , it must be that EUij > EUi1. But by Assumption 2(i), this implies that good j is searched,

which is a contradiction.

Note that Lemma 1 does not imply that good 1 always maximizes utility if it is searched. Rather, it

implies that if good 1 is searched, the utility-maximizing good will also be searched (whether it is good

1 or not) and thus the consumer will choose that good. The lemma also does not mean that consumers

searching good 1 are fully informed (in a search model they typically will not be), but just that those

consumers act as if they were fully informed.

Lemma 1 will have far-reaching implications. To understand why, it will be convenient to define

the choice probability for good j as:

sj ≡ P

({
Uij = max

k
Uik for k ∈ Gi

}
∩ {j ∈ Gi}

)
(2)

where Gi denotes the set of searched goods for individual i. Note that this probability is computed by

integrating over any individual-specific unobserved heterogeneity in utility or search, while fixing the

choice set attributes x ≡ [x1, . . . , xJ ] and z ≡ [z1, . . . , zJ ]. Therefore, sj is a function of (x, z), but we

will often omit the dependence from the notation. Throughout the paper, the sources of individual-

level unobserved heterogeneity will vary with the specific models we consider, so the symbol P will

denote integrals over different distributions depending on the context.12

Now, Lemma 1 implies that z1 only impacts choice probabilities for individuals who maximize

utility. Therefore, looking at ∂s1
∂z1

will isolate individuals who maximize utility and allow us to recover

preferences using standard arguments. To formalize this, note that Lemma 1 implies that we can write:

s1 = P (Ui1 ≥ Uik ∀k)− P ({Ui1 ≥ Uik ∀k} ∩ {for some j ̸= 1, EUij ≥ EUi1 and gi(x1, ϵi1, Uij) ≤ 0})
(3)

In other words, the probability that good 1 is chosen is the probability that good 1 is utility-

maximizing minus the probability of the only type of mistakes that consumers searching good 1 can

make, i.e. failing to search good 1 even though it is utility-maximizing. Failing to search good 1 requires

that there exists some other good j with EUij ≥ EUi1 and utility high enough that gi(x1, ϵi1, Uij) ≤ 0.

The other type of mistake, i.e. choosing good 1 when it is not utility-maximizing, is ruled out by

Lemma 1 and thus does not feature in (3).

We will now use equation (3) to show our key result, i.e. that the preference parameters α and

β are identified from the second derivatives of function s1. Since the distribution of ϵ is unrestricted,

we impose the following normalizations without loss: α = 1 (scale) and ϵij̃ = 0 for some j̃ and all i

(location).

12For instance, in the Weitzman model of Example 1, the probability is taken over the joint distribution of the
preference shocks ϵi and the search costs ci.

9



Lemma 2. Let Assumptions 1 and 2 hold. Further, assume that s1 is twice differentiable and that

∂2s1
∂z1∂xj

(x∗, z∗) ̸= 0 for some (x∗, z∗) and some j ̸= 1. Then,

∂2s1
∂z1∂zj

(x∗, z∗)
/ ∂2s1
∂z1∂xj

(x∗, z∗) =
β

α
= β, (4)

so that β is identified. In addition, the distribution of ϵ is nonparametrically identified if supp
(
ϵk − ϵj̃

)
k ̸=j̃

⊂
{
(α+ βγ1)

(
xj̃ − xk

)
k ̸=j̃

: γ1(xj̃ − xk)k ̸=j̃ =
(
zj̃ − zk

)
k ̸=j̃

for some (x, z) in its support

}
and the

support of (z̃1, . . . , z̃J) contains a point such that z̃j = z̃k for all j, k.

Proof. To facilitate intuition, we focus on the case with J = 2 goods here. Appendix A.1 contains

the proof for the general case with J ≥ 2 goods. First, we prove equation (4), often suppressing the

subscript i in what follows. The probability of choosing good 1 can be written as:

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {G = {2}}) (5)

where again G denotes the set of searched goods. This follows because (i) if good 1 is utility-maximizing,

consumers will always choose it unless they search only good 2; and (ii) the other type of mistake

(choosing good 1 when it is not utility-maximizing) is ruled out by Lemma 1.

Let ũj ≡ αxj + βzj be the mean utility of good j, so that Uij = ũj + ϵij , and let (x, z) = (x∗, z∗).

Our goal will be to show that both z2 and x2 only impact ∂s1
∂z1

via ũ2. This, in turn, implies that

∂2s1
∂z1∂z2

= ∂2s1
∂z1∂ũ2

∂ũ2
∂z2

and ∂2s1
∂z1∂x2

= ∂2s1
∂z1∂ũ2

∂ũ2
∂x2

, implying the result in equation (4). To this end, note that:

P ({U1 > U2} ∩ {G = {2}}) =

P ({U1 > U2} ∩ {EU2 > EU1} ∩ {g(x1, ϵ1, U2) ≤ 0}) =

P ({U1 > U2} ∩ {g(x1, ϵ1, U2) ≤ 0})− P ({EU1 > EU2} ∩ {g(x1, ϵ1, U2) ≤ 0})

(6)

where the second line follows since EU1 > EU2 implies U1 > U2 and thus P ({EU1 > EU2} ∩ {g(x1, ϵ1, U2) ≤ 0}) =
P ({U1 > U2} ∩ {EU1 > EU2} ∩ {g(x1, ϵ1, U2) ≤ 0}). The second term on the last line of display (6) is

not a function of z1. The first term is only a function of x2 and z2 via ũ2. This, along with equation

(5), implies that both z2 and x2 only impact ∂s1
∂z1

= ∂P (U1>U2)
∂z1

− ∂P ({U1>U2}∩{G={2}})
∂z1

via ũ2. This,

together with the normalization α = 1, proves equation (4).

We now show that the distribution of ϵ can be identified. Consider choice sets where z̃j is the

same for all j. In this case, the good with the highest expected utility also has the highest realized

utility. Thus, consumers who search in descending order of expected utility always choose the utility-

maximizing good and we can write:

sj̃ = P (ϵk − ϵj̃ ≤ (α+ βγ1)(xj̃ − xk) ∀k). (7)
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This is a standard full-information demand model and we can follow the argument in Section 4.2 of

Berry and Haile (2014) to identify the joint distribution of ϵ. Specifically, letting x vary — and relying

on the fact that the coefficient α+ βγ1 is identified given knowledge of γ1 — one can use (7) to trace

out the distribution of
(
ϵk − ϵj̃

)
k ̸=j̃

over the set in the statement of the theorem. This, paired with

the location normalization ϵij̃ = 0, gives identification of the distribution of ϵ.

This result shows that the preferences parameter β is identified from our ratio of second derivatives

and that the entire distribution of ϵ can be traced out nonparametrically under additional support

restrictions. Specifically, this second argument relies on varying x and z in such a way that z̃j = z̃k

for all j, k, which is equivalent to γ1(xj − xk) = zj − zk. Thus, we require the support of ϵ to be

contained in the set of (α+ βγ1)x values that satisfy this condition (for some value of z). Note that

in the case where γ1 = 0, the assumption reduces to requiring that the support of ϵ be contained

in the support of x, which is in line with restrictions used in the literature (Berry and Haile 2014).

In practice, nonparametrically estimating the distribution of ϵ may be challenging with limited data.

Indeed, in our empirical applications, we leverage standard parametric assumptions.

Finally, we show that in many models of interest, identifying preferences based on the ratio of first

derivatives leads to understating consumers’ taste for z. For this result, we make two mild additional

assumptions: (i) that the function gi(xj , ϵij , ū) is weakly increasing in xj , and (ii) that α + βγ1 ≥ 0.

Condition (i) is satisfied in all the search model considered above (Examples 1–5) when the coefficient

on x in utility is positive and corresponds to the mild requirement that consumers are (weakly) more

prone to searching a good the higher the value of x for that good. Condition (ii) is also intuitive and

it requires that the effect of xj through expectations about zj (i.e., βγ1) not flip the sign of the overall

effect. For example, if xj captures how inexpensive the product is and zj is its quality, then it must be

that consumers still value a decrease in price even after accounting for the fact that they expect lower

quality.

Lemma 3. Let Assumptions 1 and 2 hold. Further, assume that gi(xj , ϵij , ū) is weakly increasing in

xj and that α+ βγ1 ≥ 0. Then, for all j, k,

∣∣∣∂sj
∂zk

/ ∂sj
∂xk

∣∣∣ ≤ |β|. (8)

Proof. See Appendix A.2.

The results in Lemmas 2 and 3 suggest a natural approach to test for full information. Under the

null hypothesis of full information, sj = P (Uij ≥ Uik ∀k) and therefore, by the chain rule,

∂sj
∂zk

/ ∂sj
∂xk

=
∂2s1
∂z1zj′

/ ∂2s1
∂z1∂xj′

= β (9)

for all j, k and all j′ ̸= 1. On the contrary, when consumers are unaware of z for some goods, then
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the ratios of first derivatives need not be equal to the ratios of the second derivatives. In particular,

Lemma 3 showed that the ratios of first derivatives will tend to be smaller in magnitude within the

class of search models we consider. This motivates the testing approach in the following lemma.

Lemma 4. Under Assumption 1, if consumers are fully informed, then
∣∣∣ ∂sj∂zk

/
∂sj
∂xk

∣∣∣ = ∣∣∣ ∂2s1
∂z1∂zj′

/
∂2s1

∂z1∂xj′

∣∣∣
for all j, k and all j′ ̸= 1. Under Assumptions 1 and 2,

∣∣∣ ∂sj∂zk

/
∂sj
∂xk

∣∣∣ ≤ ∣∣∣ ∂2s1
∂z1∂zj′

/
∂2s1

∂z1∂xj′

∣∣∣ for all j, k and

all j ̸= 1. Thus, it is possible to test the hypothesis of full information by checking whether the ratios

of first derivatives are attenuated relative to the ratios of second derivatives.

A natural question is whether the testable implications in Lemma 4 are still valid when Assumption

1 is violated and, in particular, when the coefficients on product attributes are heterogeneous across

consumers. One might worry that when consumers have heterogeneous preferences, the ratios of

first derivatives might be attenuated relative to the ratios of second derivatives even under the null

hypothesis of full information. In Appendix C, we provide verifiable sufficient conditions that rule this

out when the ϵ shocks are Gumbel distributed and the coefficients can be signed (e.g., β is distributed

on the positive reals); the latter is needed to ensure that the identity of good 1 is consistent across

consumers. Under these conditions, the testing approach based on second derivatives is valid even in

the presence of heterogeneity in α or β. Further, we show that this is not generally the case when

β = 0 for a positive mass of consumers. Intuitively, if some consumers don’t care about z at all, this

will tend to lead to attenuation of the first-derivative ratios even under full information. However, we

show that using a slightly different approach allows us to distinguish between this scenario and the

case where consumers search (and have homogeneous β). More specifically, we use the fact that ratios

of derivatives of the same order (i.e.,
∂2s1/∂z1∂z2
∂2s1/∂z1∂x2

and
∂2s2/∂z2∂z1
∂2s2/∂z2∂x1

) are equal under the assumption of full

information, even when β = 0 for some consumers. In contrast, these ratios will in general not be the

same when consumers engage in search. This discrepancy allows us to empirically distinguish the two

cases.

So far we have discussed how to adjust our testing approach to accommodate heterogeneity in

β on the positive or negative reals. Identifying the distribution of the random coefficients in our

setting is more challenging and in general will require taking higher-order derivatives or maintaining

parametric assumptions on the distribution of the random coefficients. We provide some results on

this in Appendix A.10.

3 Extensions

We now consider a few extensions to our baseline model that are relevant for empirical work.
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3.1 Endogenous attributes

So far, we have assumed that the observed product attributes are independent of all unobservables.

This can be restrictive, especially in settings in which product attributes — notably price — are

chosen by firms who might know more about preferences or product attributes than is captured by the

observed data. As highlighted by a large literature (e.g., Berry, Levinsohn, and Pakes (1995)), this

typically leads to correlation between the attributes chosen by firms and product-level unobservables.

Here we consider an extension of our model that allows for endogenous product attributes. We

specify the utility that consumer i gets from good j as

Uij = αxj + βzj + λpj + ξj + ϵij (10)

where pj denotes the endogenous characteristic and ξj is a product-specific characteristic that is known

by consumers before search, but is not observed by the researcher. We consider both the case where pj

is visible to consumers without search and that in which consumers need to search good j to uncover

pj (in which case, with a slight abuse of notation, pj coincides with zj). If pj is price, the first scenario

corresponds to settings such as e-commerce where typically price is visible on the results page and

does not require any further clicking by the user. On the other hand, the second scenario covers cases

in which price is itself the object of consumer search (there is a large literature on this, particularly in

relation to the often observed price dispersion for relatively homogeneous goods; see, e.g., Stahl (1989),

Hong and Shum (2006) and Hortaçsu and Syverson (2004)). We show identification of preferences for

each of these two cases. To this end, we introduce two mutually exclusive variants of assumptions

2(i)-2(ii).

Assumption 3. (i) The attribute pj is visible to consumers prior to search and consumers form

expectations on zj using E(zj |xj , pj) = γ0 + γ1xj + γ1,ppj . Further, consumers search in descending

order of expected utility EUij = δj+ϵij , where δj ≡ βγ0+(α+βγ1)xj+(λ+βγ1,p)pj+ξj . Conditional

on having utility ū in hand, consumer i searches j if and only if gi(δj , ϵij , ū) ≥ 0 where gi is increasing

in δj and decreasing in ū.

(ii) The attribute pj is uncovered by consumers only upon searching good j. In this case, zj coin-

cides with pj and consumers form expectations on pj using E(pj |xj) = γ0 + γ1xj . Further, consumers

search in descending order of expected utility EUij = δj + ϵij , where δj ≡ βγ0 + (α + βγ1)xj + ξj .

Conditional on having utility ū in hand, consumer i searches j if and only if gi(δj , ϵij , ū) ≥ 0 where gi

is increasing in δj and decreasing in ū.

Like Assumptions 2(i) and 2(ii), Assumption 3 states that consumers search in descending order of

expected utility and decide whether to search good j based on the utility in hand and the information

they have on good j prior to search. In Appendix A.4, we show that our model falls within the class

of demand systems studied by Berry and Haile (2014). Thus, we can invoke their results to establish
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nonparametric identification of the structural choice probability functions — i.e., the functions that

map all market-level attributes, including the unobservables ξ, into the probability of purchase. Of

course, this requires valid instruments for the endogenous variables, but the requirements are no more

demanding than in the case of full information. In particular, standard arguments can be applied

to motivate the usual instruments for price, such as cost shifters, exogenous attributes of competing

products, and prices of the same products in other markets. One caveat is that, to ensure that the

exclusion restriction is satisfied, it’s necessary to assume that consumers do not know these instruments

or, if they do, that they do not use them to form expectations on z. For instance, one might assume that

consumers are not aware of production cost shifters when making their choices. Once the structural

choice probability functions are identified, one may apply our results in Section 2.2 to identify the

preference parameters in (10). Note that, as in the case with full information, recovering the structural

probability functions when some of the product attributes are endogenous requires variation across

many markets. This is more demanding of the data relative to the case without endogeneity where

just a few markets suffice in principle (see Section 4.2 for more discussion of this point).

3.2 Allowing for variables affecting search but not utility

One important case in which the assumption that consumers search in descending order of expected

utility (Assumption 2(i)) is likely to fail is when some factors impact search costs but not utility. An

example might be search position for online purchases. Arguably, search position impacts the order

in which people search but often has no direct impact on utility conditional on search (Ursu 2018).

In this case, consumers might first search items with higher search positions even if they do not have

higher expected utility. For example, if we randomly assign search order, this is likely to impact choices

even though we are not changing the utility of each item conditional on search. Another example is

advertising, which entices consumers to search advertised goods but may not affect their utility.

Our model can be extended to deal with cases where the factors impacting search but not utility

are observable and the sign of their impact on search probabilities is known (such as position in a list

of e-commerce results). Denoting this variable by rj , suppose that rj is observed by the researcher

and that higher values of rj make a good weakly more likely to be searched. Now, rather than

assuming that goods are searched based on EUij alone, we assume that goods are searched based on

m(EUij , rj), where m is strictly increasing in both EUij and rj . We show in Appendix A.5 that our

identification argument from Lemma 2 continues to hold under additional assumptions, including an

IIA restriction. In spite of these additional, stronger assumptions, we show that our results are not

sensitive to implementing this alternative model in our empirical application in Section 8.
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3.3 Unobservables revealed by search

Our baseline model focused on the case where the attribute(s) z revealed by searching a good are

entirely observed by the researcher. However, it is easy to imagine settings in which the data does not

capture all of the information that consumers acquire through search. Indeed, the existing literature

often models search as the process whereby the idiosyncratic preference shocks — ϵij in our notation

— are revealed (e.g., Kim, Albuquerque, and Bronnenberg (2010), Ursu (2018), Moraga-González,

Sándor, and Wildenbeest (2021)). To accommodate this, we consider a modification of our model

where the shock ϵij only becomes known to consumer i upon searching good j (along with zj). In

other words, consumers know xj for all j prior to search and decide whether to acquire ϵik and zk for

any given good k through search. As a result, the expected utility in Assumption 2(i) now takes the

form EUj = βγ0 + (α+ βγ1)xj , the rule determining whether a good is searched in Assumption 2(ii)

is now gi(xj , u) ≥ 0, and Assumption 2(iv) is dropped.

In this case, the hidden part of utility is not fully observed by the researcher and thus Lemma 1

does not hold (in fact, it is not even possible to identify good 1). However, if consumers tend to value

the x attribute (i.e., α+βγ1 ≥ 0), they will search in descending order of it, implying they will always

search the good with the highest x. Using this fact, we show in Appendix A.6 that the ratio of second

derivatives
∂2sj

∂zj∂zk

/
∂2sj

∂zj∂xk
recovers β

α provided that one chooses good k to be the good with the highest

value of x, which could coincide with good 1 (here, j need not be the good with the highest value

of z̃). Recall that in our baseline model, ∂2s1
∂z1∂zk

/
∂2s1

∂z1∂xk
= β

α for any choice of k. Thus, specifically

choosing good k to be the good with the highest value of x works both in our baseline model and when

unobservables are instead revealed by search rather than being part of expected utility. We estimate

this version of the model in our empirical application of Section 8 and find that the results are robust.

In Appendix A.6, we also show that it is possible to test the hypothesis that ϵ is only revealed via

search. Indeed, under this hypothesis, we show that the ratio of first derivatives ∂s1
∂zk

/
∂s1
∂xk

also recovers

β
α when k is the good with the highest value of x, so that ∂s1

∂zk

/
∂s1
∂xk

= ∂2s1
∂z1∂zk

/
∂2s1

∂z1∂xk
. Instead, if ϵ is

visible prior to search, in general we have ∂s1
∂zk

/
∂s1
∂xk

̸= ∂2s1
∂z1∂zk

/
∂2s1

∂z1∂xk
. Thus, testing equality of these

two ratios provides a test of the null hypothesis that ϵ is only revealed via search.

3.4 Outside option

So far, we have implicitly assumed that all products are “inside products,” in the sense that they

each have x and z attributes observed by the researcher. However, in many settings, one may want

to model an outside option, which corresponds to choosing none of the products for which attribute

data is available. Further, the literature often assumes that consumers know the utility of the outside

15



option for free.13 First, note that Lemma 1 still holds in this case: if consumers search good 1 (now

defined as the inside good with the highest value of z̃), they always choose the utility-maximizing good

(which could be the outside option). As a consequence, our result can still be applied to estimate β,

as we formally show in Appendix A.9.

The presence of the outside option can rationalize the pattern whereby a consumer is faced with a

set of options and chooses to not search any of them. In our model, this happens when the utility from

the outside option, Ui0, is sufficiently high: gi(xj , ϵij , Ui0) ≤ 0 for all j. This creates a complication

when estimating the distribution of ϵ: consumers might mistakenly choose not to search any of the

inside goods, implying that even when we condition on z̃j = z̃ for all j, we cannot use full information

arguments to trace out the distribution of ϵ. Following many papers in the search literature, we rule

this out by assuming that consumers can search one inside good costlessly (e.g., see Hortaçsu and

Syverson (2004) and the review in Ursu, Seiler, and Honka (2023)). This assumption implies that at

least one of the inside goods is always searched and can be thought of as a way to restrict attention to

the population of consumers who are sufficiently interested in the product category.

Finally, in a model with an outside option, one would typically want to allow for a constant term

shifting the utility of the inside products relative to the outside option. This can be captured by

including among the x variables a dummy for the inside products.

3.5 Expectations parameter γ1 unknown to the researcher

Our main results in Section 2.2 assumed that the researcher knows the parameters governing consumers’

expectations on z. We now consider the case in which the researcher is not willing to assume a value

of γ1. While studying identification of the way consumers form expectations is beyond the scope of

this paper, we show that we can still gain some traction under additional assumptions. Specifically,

suppose that the sign of γ1 is known (e.g., higher priced goods are of higher quality). Without loss, we

assume γ1 > 0. In addition, suppose that there exist choice sets in which a good has both the highest

value of z and the lowest value of x. Even when γ1 is unknown, this good is known to maximize the

residual z̃j = zj − γ1xj and we label it by 1. With good 1 defined appropriately, the argument from

Lemma 2 shows that second derivatives with respect to z1, zj , xj for j ̸= 1 identify β/α, which just

equals β given the normalization α = 1. Note that, unlike in the case with γ1 known, now we cannot

in general recover the distribution of ϵ since this requires varying x while keeping z̃j — which is a

function of the unknown γ1 — fixed at a common value for all j. Therefore, this result is not sufficient

to simulate choices with full information. However, comparing the ratio of second derivatives to the

ratio of first derivatives does allow us to conduct tests for full information as discussed above.

13Alternatively, if one assumes that consumers need to search in order to uncover the utility of the outside option,
then the latter is no different than any other good and thus our arguments from Section 2.2 immediately apply as long
as there are at least two “inside” goods, i.e. goods for which variation in x and z is available in the data.
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4 Discussion

4.1 Discussion of Search Model Assumptions

As discussed above, there are several microfoundations for the first assumption. For example, in

the Weitzman (1979) search model, consumers search goods in order of reservation utility, which is

a function of the product attributes that are visible prior to search, the distribution of the hidden

attribute z̃j , and search costs. If z̃j is i.i.d. across goods and consumers have the same search cost

for all goods, then consumers will search in order of expected utility (see Example 1). Still, there

are at least three reasons this argument might fail: first, there may be more uncertainty about the

hidden attribute for some goods than others, and this might lead individuals to search such goods first.

Second, unobservables might be correlated across goods, so that, e.g., learning good news about good

1 might cause one to positively update about good 2 and choose to search it before good 3 even if

EUi3 > EUi2. Third, search costs might vary across goods, meaning that consumers prefer to search

goods with lower search costs first even if they exhibit lower expected utility than other products.

While the restriction that priors be i.i.d. and search costs be constant across goods is sufficient for

Assumption 2(i), it is not necessary. Indeed, our baseline result with γ1 ̸= 0 allows for non-i.i.d. priors

about the unobserved attribute z. Alternatively, priors may be heterogeneous but consumers may be

unsophisticated and fail to take into account option value, as in the directed cognition model studied in

Gabaix, Laibson, Moloche, and Weinberg (2006). Consumers searching for a laptop online may enter

some attributes into a search function and look at the items which rank highly according to those

attributes without regard for whether a lower item is worth searching first because its value is more

uncertain despite its lower average utility. Such examples also raise the natural concern that in many

settings, factors like the order in which items appear in search may impact search costs separately

from expected utility. Applications in the marketing literature often allow search costs to vary with

observable attributes, such as the position of a good in search (e.g., Ursu (2018)). As discussed in

Section 3.2, we extend our main result to allow for these violations of our expected utility assumption

by considering cases where some observable attributes impact search but not utility.

Our second assumption on search is that consumers search good j if and only if gi(xj , ϵij , ū) ≥ 0

where ū is utility in hand; we also impose the natural restriction that one is (weakly) less likely to search

as ū increases. This assumption is satisfied in most search models we are aware of in the literature,

including Weitzman search, satisficing, simultaneously searching all goods with expected utility above a

threshold, random search, and directed cognition. One exception is a model in which consumers search

simultaneously as in Chade and Smith (2006). This model would violate the assumption because the

function gi that determines whether i searches good j cannot be written only as a function of xj and ϵij

since it will depend on the expected utility of all goods. We show in Appendix A.7 that our methods

can be extended to accommodate one version of this model based on Honka, Hortaçsu, and Vitorino
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(2017). We also investigate the robustness of our approach to a violation of this assumption in the

simulations of Appendix D.

Our third assumption, that consumers choose the good which maximizes utility among searched

goods, embeds two separate ideas. The first is that consumers do not choose a good they have not

searched; this is natural in contexts such as e-commerce, where consumers typically have to open a

product’s page in order to add it to their carts. The second restriction is that consumers maximize

utility given the information available. This could be relaxed by specifying a positive utility function

that allows for consumer errors; as long as consumers maximize that positive utility function, the

weight that they would attach to the hidden attribute given full information will be revealed. It is

then up to the researcher whether to take this weight as the normative benchmark or whether to use

some external standard.

The fourth assumption again nests two pieces: (i) that only the value of zj is unknown prior to

search, which we relaxed in Section 3.3, and (ii) that search reveals all information about the hidden

attribute. This assumption is natural in settings where zj is fully observed to the econometrician, as

in our case, but is not always plausible. For instance, if the hidden attribute is school value added, a

consumer who searches more may learn about test scores and graduation rates, but these are (imperfect)

signals of the underlying variable. There is a literature on consumer (Bayesian) learning which models

more explicitly the case when search is not fully informative (see Erdem and Keane (1996), Ackerberg

(2003), Crawford and Shum (2005), Ursu, Wang, and Chintagunta (2020), among others).

While our assumptions are not without bite, they subsume a range of search protocols and thus are

less restrictive than fully specifying a structural search model. Still, one might wonder if they will hold

in empirically relevant settings. We address this in two ways. First, in Section 4.3, we show that the

assumptions on the search process can be tested based on the same data required for estimation of the

model. Second, we apply our approach to data from a lab experiment (Section 7), where we are able

to successfully recover preferences based on data with imperfect information, as well as observational

data from Expedia (Section 8), where our testing approach correctly identifies the attribute that is not

immediately visible to consumers.

4.2 What type of data is required?

The key input to our approach is a flexible estimate of s1, the choice probability for the good with

the highest z̃ as a function of the x and z attributes of all the products in the choice set. As in any

discrete choice model, this requires enough variation in the x and z attributes across choice instances.

Standard full-information arguments assume that s1 can be estimated at a choice set (x, z) and at a

choice set that is identical except that zj is perturbed by a small amount for some good j. Comparing

these two markets nonparametrically pins down the first derivatives of the choice probability functions

with respect to zj . Similarly, nonparametric identification of ∂s1
∂x1

requires a third market where x1
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varies holding fixed all other attributes. Thus, recovering ∂s1
∂z1

/ ∂s1
∂x1

requires at least three markets.

The required variation in full-information models can come from individual or aggregate data, and

can come from cross-sectional variation across markets or panel variation within markets over time.

When products have fixed attributes, one typically makes an exchangeability assumption, i.e. that the

distribution of the ϵij shocks is the same regardless of the identity of product j; variation in product

availability across markets then generates the desired variation in (x, z) even if those attributes are

fixed for any given good. The exchangeability assumption likewise accommodates the case where the

identity of good 1 (i.e., which good has the largest value of z̃) varies across markets.

In our approach, all of the above still applies – the only difference is that we need more data than

under full information since we require second derivatives rather than first derivatives. Specifically,

because we take derivatives with respect to three arguments, we need at least six markets to compute

our key ratio.14 Of course, in practice we typically do not observe such clean variation – usually,

multiple elements of (x, z) move simultaneously. Just like in full-information models, this is where

parametric restrictions on the choice probability functions are helpful, and data from additional markets

or time periods can reduce the dependence on specific parametric assumptions.

One exception to the argument above is the case with endogenous product attributes (Section 3.1).

In this setting, just like in full-information models, one needs data from many markets in order to

recover the market-level unobservables that are correlated with the endogenous attributes (see Berry

and Haile (2014) for the case with aggregate data and Berry and Haile (2020) for the case with

individual-level data).

4.3 Testing Search Model Assumptions with and without Observable Search

Our analysis so far has proceeded as if search were not observed; that is, we observe final choices as a

function of x and z but we do not observe which specific goods were searched. Datasets increasingly

contain some information on what is searched: for example, in online clickstream data, one observes

not only which product was purchased, but also which products were clicked on en route to purchase

(e.g., Ursu (2018)). In many settings, it is plausible to assume that such clicks reveal which products

were searched.

Can preferences be identified without resorting to our approach or an explicit search model in these

cases? One might speculate that our identification results would be unnecessary; given data on which

products were searched, perhaps preferences can be estimated by applying standard methods to the set

of searched products without any of the assumptions we require here. However, this is not generally

the case because the unobservable component of utility may also drive the search decision. In such

14Given a baseline market, recovering ∂2s1
∂z1∂zj

requires perturbing z1 alone, zj alone, and z1 and zj jointly. Similarly,

recovering ∂2s1
∂z1∂xj

requires perturbing z1 alone, xj alone, and z1 and xj jointly. Thus, we need five markets plus the

baseline market.
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cases, goods with undesirable observables that are searched likely have an especially high realization

of ϵ. Thus, it may appear from choice probabilities conditional on search as though the observable

attributes are not so bad when in practice, individuals dislike those attributes but this dislike is offset

by a large ϵ.15

Once our approach is used to identify preferences, clickstream data can be used to conduct addi-

tional overidentifying tests. Lemma 2 shows that one can identify the preference parameters as well

as the distribution of the ϵi shocks. Given this and data on the set of searched goods Gi — including

its size |Gi| — we can thus compute:

P (j ∈ Gi|x, z) =
∑
k

P (|Gi| = k|x, z)P (j ∈ Gi||Gi| = k,x, z) (11)

since the first probability on the right-hand side is observed and the second is pinned down by the

model. Specifically, if k goods are searched, the model says that those k goods must be those with the

highest expected utility EUij = βγ0 + (α + βγ1)xj + ϵij , and this probability can be computed given

identification of the preference parameters and of the distribution of ϵi. Checking the right-hand side

of (11) against the observed search probabilities provides a test of the model.

Even when we do not observe auxiliary information on which goods are searched, the assumptions

in our model can be jointly tested by checking whether the observed choice probabilities are consistent

with bounds implied by the estimated preferences and assumed search rule. To construct an upper-

bound on choice probabilities, note that a good j cannot be chosen if there is an alternative good with

higher expected utility and higher utility. Thus, we have:

sj(x, z) ≤ 1− P (Uik ≥ Uij and EUik ≥ EUij for some k) (12)

The latter probability can be directly computed from knowledge of preferences and the distribution of

ϵ. To construct a lower-bound, note that if good j maximizes both utility and expected utility, then it

15A second reason unobservable components of utility might impact search is if preferences are unobservably hetero-
geneous (random coefficients). Even if search does not depend on ϵ, preferences cannot generally be recovered using only
conditional choices unless IIA is satisfied. To see why heterogeneous preferences create a problem, imagine products have
quality ratings from 1-5. There are two types of consumers, one type that cares about quality and one type that does
not. The type that cares about quality is indifferent about quality over the 4-5 range, but values quality over the 1-4
range sufficiently that quality differences outweigh any other differences observable to consumers. Suppose that quality
is observable to consumers (x) but price is only observed conditional on search (z). Quality-conscious consumers only
search goods with quality of at least 4. Other consumers will search all goods. If we estimate preferences conditional on
search, we will wrongly conclude that no one cares about quality: quality conscious consumers don’t care about quality
given the goods they have searched (quality ranging from 4-5) and non-quality conscious consumers don’t care about
quality at all. To estimate preferences correctly, we would have to jointly model the decision of which goods to search and
preferences conditional on searching. Thus, with heterogeneous preferences, the existing literature requires specifying a
search model in order to estimate preferences even when search is observed in the data. Our approach avoids the need to
do this under the assumptions we have outlined. We relegate this point to a footnote because the estimation of high-order
derivatives required to identify random coefficients models in our approach may often be impractical.
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will be chosen. This implies:

sj(x, z) ≥ P (Uij ≥ Uik and EUij ≥ EUik for all k) (13)

Once again, the probability on the right can be computed given knowledge of preferences and the

distribution of ϵ. Checking whether our estimated choice probabilities are consistent with these bounds

provides a test of the model.

Finally, our model is overidentified. For example, in our baseline case with linear utility and

homogeneous preferences, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

= β for all alternative goods j ̸= 1 and values of (x, z) at which

the derivative in the denominator is nonzero. This provides a number of overidentifying restrictions

which could be used to further test the model.

4.4 Which Counterfactuals Can Our Approach Address?

Here, we discuss the class of counterfactual questions that can be addressed using our method. We

start from applications that do not require recovering the distribution of search costs.

Full Information Counterfactuals One important class of counterfactuals asks: how would con-

sumers choose if search costs were reduced? The most natural counterfactuals in our baseline case

involve directly informing consumers about the hidden attribute. These counterfactuals are natural in

our setting because the hidden attribute is observable to the econometrician.16 In these cases, knowing

preferences is sufficient to simulate how information would impact choices without a structural search

model, as we demonstrate in our lab and field experiments. In settings like Hastings and Tejeda-Ashton

(2008) or Allcott and Taubinsky (2015) where experimenters fully inform consumers about attributes

of goods which were previously accessible at a financial or cognitive cost, our approach can be used

to forecast the impact of interventions before they are conducted. Additionally, in Appendix G we

show how to quantify the welfare gains from more informed choices with an additional separability

assumption. Of course, since our approach does not commit to a specific model of search, it does not

speak to the gains directly stemming from reduced search costs. In this sense, the estimated increase

in welfare can be viewed as a lower bound on the total gains from an information intervention. Esti-

mating the reduction in search costs requires either fully specifying a search model and recovering the

cost distribution (we discuss this more at the end of this subsection) or using some auxiliary data on,

e.g., time spent searching and value of time.

16This can be contrasted with cases where information is only partial and so some search costs likely remain. For
example, when unobservables are revealed by search (as in Section 3.3), some information consumers learn upon search is
not observable to the econometrician, so informing consumers about the observable component would not eliminate the
need to search.

21



Advertising and Product Design As a second related example, consider a firm trying to under-

stand which features to emphasize in the advertising of a product. Conditional on visible attributes,

our results could be used to identify features that consumers value but are not currently always aware

of. The firm could use this insight to optimize its advertising strategy, as well as to inform the design

of new products (see, e.g., Becker and Murphy (1993) and Bagwell (2007)).

Normative Evaluation of Choices In many counterfactuals where limited information or search

costs are not the primary object of interest, one nonetheless is concerned about accurately valuing the

attributes of goods. An example is a subsidy for environmentally friendly automobiles. To evaluate

such a subsidy, one would conventionally estimate demand and cost parameters in the automobile

market (Berry, Levinsohn, and Pakes 1995). If the market were otherwise competitive and efficient, the

subsidy might distort choices (creating deadweight loss) but have offsetting externalities. If, however,

some consumers are unaware of differences in energy efficiency, the subsidy might redirect them to the

cleaner products they would value most if they had more information, meaning that it may be both

privately and socially desirable. Our methods can be used to recover whether, prior to imposing the

subsidy, consumers are informed about differences in energy efficiency.

We have focused so far on applications where search costs do not need to be recovered. However,

our model can also be used to identify search costs given preferences and an underlying structural

search model. In Appendix F, we give an explicit example of how search costs can be recovered in a

Weitzman model once preferences are known. Intuitively, when preferences are known, we know how

consumers would respond to the hidden attribute with zero search costs, and thus we can trace out

the distribution of search costs from the observed responsiveness of choice probabilities to the hidden

attribute. In Appendix F, we also discuss in more detail questions that can be addressed once search

costs are recovered.

5 Estimation

Our identification results show that preferences can be recovered given knowledge of the choice proba-

bility function for good 1, denoted by s1(x, z). We now discuss how s1 can be estimated from data on

choices and product attributes. We focus on the case with individual-level data (as in the experiment

of Section 7 and the application of Section 8). However, our identification approach also applies to

aggregate (i.e., market share) data as long as one can consistently estimate the choice probability

functions sj , as discussed in Section 4.2. With individual-level data, our setup implies the following

conditional moment restrictions:

E (yj − sj (x, z) |x, z) = 0 ∀j, (14)
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where yj is a dummy variable equal to 1 if a consumer chooses good j. Thus, methods designed

to estimate conditional moment restriction models can be used. Of course, the performance of an

estimator will depend on how flexibly it captures the derivatives that identify preferences in our

approach.

We consider two approaches to estimating s1(x, z), and thus its derivatives: (i) an approximation

via Bernstein polynomials which is viable when the number of goods and attributes is small; and (ii)

a “flexible logit” model which is more ad hoc, but scales better as the number of goods increases.

Both estimation approaches involve choosing tuning parameters; for example, in the Bernstein

polynomial approach, one must choose the degree of the polynomial approximation. To deal with this

problem, in our experimental analysis, we pre-registered the code used to analyze the experiment. We

would encourage other researchers using our method to do the same to avoid concerns about post-hoc

tuning to obtain desired results.

5.1 Approximation via Bernstein polynomials

Following Compiani (2022), one can approximate the demand function via Bernstein polynomials. This

allows the researcher to impose natural restrictions via linear (and thus easy-to-enforce) constraints

on the coefficients to be estimated. Specifically, the class of models considered in this paper satisfies

standard monotonicity restrictions in x and z (sj increasing in xj and zj and decreasing in x−j and z−j).

In addition, one can consider other constraints, such as exchangeability across goods, which requires

demand to only depend on the attributes of the goods, but not their identity.17 Exchangeability is

satisfied if the unobservables entering demand (e.g., preference parameters and shocks, as well as search

costs) have the same distribution across goods. We impose both monotonicity and exchangeability

in the Bernstein polynomial results reported below. The purpose of these restrictions is twofold.

First, they discipline the estimation routine in the sense that they help obtain reasonable estimates

of quantities of interest (e.g., negative price elasticities). Second, they help partially alleviate the

curse of dimensionality that arises as the number of goods increases. The coefficients in the Bernstein

approximation of sj can be estimated by minimizing a GMM objective function based on the restrictions

in (14) subject to the constraints. In Appendix D, we report results from numerous simulations with

a variety of data generating processes which suggest that this estimation approach performs well with

a small number of goods (2 or 3) when the assumptions of our model are satisfied. It also consistently

outperforms standard logit estimates in simulations where our assumptions are violated. This approach

has the advantage of providing a nonparametric approximation to the choice probability function s1,

but it suffers from a curse of dimensionality that makes it very data-demanding for ≥ 4 goods.

17See Compiani (2022) for a formal definition of exchangeability.
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5.2 “Flexible Logit”

As the number of goods increases, nonparametric methods face a curse of dimensionality, and thus it

becomes necessary to place some additional structure on the problem. In this section, we develop one

such approximation which performs well in simulations for a larger number of goods.18

As discussed in more detail in Appendix E, conventional full-information models typically impose

strong restrictions on the structure of the derivatives of choice probabilities. For example, in a multino-

mial logit model, it is always the case that ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

= ∂s1
∂zj

/ ∂s1
∂xj

. Since our test for full information

is based on detecting discrepancies between these two ratios, a logit model will clearly not be suitable.

To allow for the required additional flexibility, we let the mean utility for good 1 depend directly on

attributes of rival goods as follows:

ax1 + b1z1 +
∑
k ̸=1

(ηkwz1kzk + η2kwx1kxk + ρkwz2kzkz1 + ρ2kwx2kxkz1) (15)

where wz1k, wx1k, wz2k and wx2k are known weights, and a, b1, ηk, η2k, ρk and ρ2k are coefficients to

be estimated. Further, we let the mean utility for k ̸= 1 take the standard form axk + bzk. If we set

the weights equal to 1, this would be a conventional logit model where the utility for good 1 is allowed

to depend flexibly on the attributes of good 1, as well as rival attributes interacted with the attributes

of good 1. This is the idea behind the “universal logit” model (McFadden 1981; McFadden 1984) and

thus our method can be viewed as an extension of this designed to target our second derivatives of

interest. Specifically, approximating choice probabilities with estimates from a standard logit model, it

is possible to choose the weights as a function of choice probabilities so that the structural parameter of

interest (β/α) is a closed form function of the estimated coefficients (we show this formally in Appendix

E). More precisely, with weights chosen appropriately:

∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

=
−b+ ηj + ρj
−a+ η2j + ρ2j

, (16)

where the coefficients on the RHS are recovered directly by estimating the model based on equation

(15). The weights are estimated as functions of choice probabilities and coefficients from a naive logit

model.19

We note that the parameters in (15) do not have a causal interpretation (i.e., we are not positing

that the actual utility of good 1 depends on the attributes of good k for k ̸= 1). Instead, (15) is simply

18For example, in our application in Section 8, we have 10 products per choice set and flexible logit involves 46
parameters in total. In contrast, a fully nonparametric approach would involve a much larger number of parameters (e.g.,
even if we modeled s1 as a polynomial of up to degree 1 in each of the arguments (x, z), we would have 220 = 1, 048, 576
parameters).

19Specifically, we assume uij = α∗xj + β∗zj + ϵij and compute the implied choice probabilities s∗j . Then: wz1j =

wx1j =
s∗j

1−s∗1
and wx2j = wz2j = β∗ (1−2s∗1)s

∗
j

1−s∗1
(1 + β∗(1− 2s∗1)z1)

−1.
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a flexible function of (x, z) that we found captures the second derivatives of s1 well. In Appendix D,

we show that the flexible logit performs extremely well in simulations for a variety of data generating

processes. For three DGPs satisfying the assumptions of our model, conventional logit estimates are

biased, but flexible logit confidence intervals include the true values. For a fourth DGP violating the

assumptions of our model, flexible logit has a small bias with a large number of goods, but is consistently

less biased than the standard logit estimates. This being said, the approach is somewhat ad-hoc and

we welcome more formally validated approaches for optimizing the trade-off between flexibility and

scalability in estimating our second derivatives of interest.

In subsequent applications, we have found that the performance of flexible logit deteriorates when

the impact of z on choices is small in the data, leading confidence intervals to explode. This is intuitive

regardless of how our model is estimated: if ∂s1
∂z1

is small, then ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

is difficult to estimate

with any precision unless the dataset is extremely large. Our approach is thus better suited to settings

where a potentially hidden attribute has a meaningful impact on choices in the raw data (e.g., school

choice as a function of high school test scores).

6 Practitioner’s Guide

Table 1 provides guidance for applied researchers seeking to use our approach. As in the previous

section, we focus on the case with individual-level data, although these procedures could be adapted to

the case with aggregate market-level data. We also assume the researcher is willing to fix the variance

of ϵ via parametric assumptions on its distribution (e.g., assume it is Gumbel distributed), so that α

cannot be normalized without loss and instead needs to be estimated. Further, we focus on the case

with continuous attributes and discuss how to handle discrete attributes in Appendix A.8. Appendix

A.11 outlines how to adapt the approach to the case where the researcher wishes to let x enter utility

nonlinearly.

The estimation routines outlined in Table 1 are likely to lead to slower-than-parametric convergence

rates. This is because our parameters of interest are estimated by evaluating nonparametric functions

at specific points and/or using a slice of the data (e.g., for the estimation of α in step 2 (c)).20 We are

however reassured by the fact that the methods perform well in both our experiment and our empirical

application.

20This step is akin to estimation for varying coefficients models (Cai, Fan, and Li 2000).

25



Table 1: Steps for Estimation

1. For each choice set in the data, identify good 1: the good with the highest z̃ (or, if z is vector-valued, the
good with the highest weighted z̃-index obtained via the procedure in Appendix A.3).

2. For the baseline model of Section 2.2, follow these steps:

(a) If the number of goods is 2 or 3, estimate the model nonparametrically:

i. Use equation (14) to estimate the choice probability function s1 using Bernstein polynomials
subject to monotonicity and exchangeability restrictions (Compiani 2022).

ii. Compute estimates of ∂2s1(x,z)
∂z1∂zj

and ∂2s1(x,z)
∂z1∂xj

for all j ̸= 1 and all choice sets (x, z) in the data.

iii. Take the ratio of a trimmed mean of ∂2s1(x,z)
∂z1∂zj

to a trimmed mean of ∂2s1(x,z)
∂z1∂xj

(both means are

over choice sets (x, z)). Further average these ratios over j ̸= 1 to obtain an estimate of β
α .

(b) If the number of goods is greater than 3, estimate the model using flexible logit (Section 5.2):

i. Create initial naive estimates (α∗, β∗) and associated choice probabilities s∗j by estimating a
naive logit model. Use these to construct the weights wij as described in Appendix E.

ii. Estimate equation (15) given these weights to recover the coefficients: a, b, (ηk, η2k, ρk, ρ2k)k ̸=1.

iii. Use equation (16) to compute ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

and take an average across j (or impose coefficient

restrictions such that ηj , η2j , ρj , ρ2j are the same for all j). This gives an estimate of β
α .

(c) Recover β as follows:

i. Estimate α via standard full-information models (e.g., logit), only using choice sets where the
variance of z̃j across j is below a cut-off.

ii. Multiply the estimate of β/α from step 2(a) or 2(b) by the estimate of α from step 2(c)i to
obtain an estimate of β.

3. If some attributes are endogenous, modify step 2(a)i to incorporate instruments (as in Compiani (2022)).
Then follow steps 2(a)ii-iii where now the choice probability s1 is a function not only of (x, z), but also
of the unobservables causing endogeneity ξ (which can be fixed once the structural demand function is
estimated).

4. If the data contains variables that are likely to affect search but not utility (e.g., rankings r on a webpage),
drop all choice sets where consumers choose a product ranked lower than product 1 (rj < r1). Then, follow
step 2 using the set R = {j : rj ≥ r1} as the choice set and including r among the x variables. In step
2(c)i, also condition on choice sets where the variance of rj across j is sufficiently low.

5. To allow for the possibility that ϵ is only revealed via search, choose product j in step 2(a)ii or 2(b)iii to
be the good with the best value of x (which could coincide with good 1).

6. Optional:

(a) In order to increase power, repeat the previous steps for various choices of the x variable (if available)
and take a weighted average of the resulting β estimates with weights proportional to their precision.

(b) Test the model by checking whether the estimated choice probabilities lie within the bounds derived
in Section 4.3.

Note: We recommend using simulations to choose the following tuning parameters prior to estimation: the
polynomial degree in step 2(a)i, the amount of trimming in step 2(b)iii, and the variance cutoffs in steps 2(c)i
and 4.
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7 Experimental Validation

Our identification proof and simulation results show that preferences can be estimated regardless of

whether consumers are fully informed, provided consumers search in a way that is consistent with our

assumptions. Of course, this does not tell us whether those assumptions are likely to be satisfied in

practice.

In this section, we test in a lab experiment whether we can recover preferences in a setting where

consumers engage in costly search. Unlike in our simulations, the search protocol is unknown to us and

not restricted to satisfy all of our model assumptions. In particular, while we enforce the assumption

that consumers must search a product in order to choose it, we do not constrain the order in which

the various options are searched nor the rule that determines when to stop searching. We nonetheless

show that we are able to correctly recover preferences using our “search-robust” estimation technique.

7.1 Set-up

We selected 1,000 books for sale on Amazon Kindle chosen from a wide variety of genres. For each

book, we observe its average rating on the site “Goodreads.com” as well as the average rating from

Amazon.com, the number of reviews on Goodreads, and the price of the book for Amazon Kindle.

In our experiment, conducted via Connect CloudResearch,21 each participant made 20 choices from

sets of 3 randomly selected books. In each choice, participants had to select a book, i.e. they had no

outside option. For all books, participants could see a photo of the cover, the title, author and genre,

as well as the Goodreads rating and the number of ratings. Prices were randomized to integers from

$11-$15 (equally likely). All books were then further discounted by an integer amount uniformly drawn

from $0-$10 (and participants were informed of this). All users were given a $15 bank at the start

of each choice, from which any costs incurred were deducted. There were a total of 196 participants,

yielding 3,920 choices.

The discount is our key variable of interest. For 5 of the 20 choices, users could see all discounts and

thus could see the net price of all options at no cost. For 15 of the 20 choices, discounts were hidden

and users had to pay a cost to see the discount for any given book.22 The cost per click was constant

for each user across the 15 choices, and randomly chosen from {$0.10, $0.25, $0.35, $0.50}. For the 15

choices with hidden information, users could only choose books after they clicked to reveal the discount

and had to choose at least one book. One of the 20 choices made by each user was randomly chosen to

be realized, and users received the chosen book as well as any money left over from the original $15.

Figure 1 shows a sample product selection screen from a choice where discounts were hidden. In this

21We preregistered the experiment and estimation codes at the platform OpenScienceFramework:
https://doi.org/10.17605/OSF.IO/D4XA2.

22The full information and costly information choice situations were randomly ordered, so that the 5 “full information”
choices were intermixed with the costly information choices.
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Figure 1: Lab Experiment: Sample Product Selection Screen

case, the user clicked to reveal the discount of the second book and could either choose that book or

continue by revealing the discounts for additional books. Note that the user could search books in any

order she wished. The average total number of clicks per participant per choice is 1.5.

The 5 choices where all information is revealed are our benchmark for the “truth.” The goal is then

to test whether the weight on discounts relative to prices that we estimate in the cases where discounts

are costly to observe matches the relative weight we see when discounts are visible to everyone (i.e. can

we predict informed choices using data from uninformed ones). Further, because both discounts and

prices are in dollar terms, and because they are randomized (and thus not signals of quality), there is

a second benchmark: if consumers are rational, the weight on discounts and prices should be equal.

We will model choices using the following utility specification:

Uij = pricej · α1 + ratingj · α2 − discountj · β + ϵij (17)

where ϵij is i.i.d. type-I extreme value and accounts for any aspect of consumers’ tastes for books (based

on the title, image, author or genre) not summarized by the price, discount and rating variables. Fully
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informed and rational consumers should have α1 = β. Our goal will be to show that we can recover

these fully informed preferences using the choices of beneficiaries for whom revealing discounts is

costly.23

7.2 Estimation Results

Columns 1 and 2 of Table 2 show results from estimating a standard logit model on consumer choices

for the 5 choice situations per consumer where all information is revealed (Full Info) and the 15 choice

situations where consumers must pay to reveal information (Costly Info), respectively. With full in-

formation, consumers place equal weight on prices and (negative) discounts, so they pass our test of

rationality. In other words, they care only about the final price of the product. By contrast, when

discounts are costly to reveal, the coefficient on the discount variable in the standard logit model

is attenuated (the “Costly Info” column). This is because consumers are insensitive to variation in

discounts for books they do not search. The ratio of the two coefficients is 1.094 in the full infor-

mation treatment and 0.665 in the costly information treatment, consistent with the attenuation bias

established in Lemma 3.

Following Section 5.1, we estimate the demand function s1(x, z) via Bernstein polynomials. The

exact procedure is described in Appendix H. Our estimate of β/α1 is 1.183, and the confidence interval

contains the corresponding estimate of 1.094 from column 1 (and the theoretical estimate of 1), and is

sufficiently tight to exclude the standard logit estimates in the costly information treatment. Besides

estimating β/α1, we need to directly recover the α coefficients. Consistent with the proof of Lemma 2,

we compute these by estimating a logit model using only choice sets where the variance of the discount

across goods is in the bottom quintile. The results are reported in column 3 of Table 2, along with

the value of β implied by our estimates of α1 and β/α1. Again, the confidence intervals include the

full information values. In other words, using data only on choices when information is costly, we

successfully recover informed preferences.24

Having recovered all preference parameters, we can compute how information will change behavior

and choice quality. Using only data on choices when search is costly, our model predicts that, on aver-

age, full information consumers would save $0.71 per choice from choosing books with lower discounts.

The corresponding number in the data is $0.64 per choice situation, since consumers in the costly

information treatment average discounts of $5.82, while consumers in the full information treatment

23Note that, given our parametric assumption on the distribution of ϵ, we are not free to normalize any of the α
coefficients here.

24To show validity of the nonparametric bootstrap for the case where the constraints are not binding asymptotically,
one can combine the general framework of conditional moment models with different conditioning variables (Ai and Chen
2007) with the results in Section 5 of Chen and Pouzo (2015). An interesting avenue for future research is to explore the
case where the constraints are binding asymptotically.
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Table 2: Standard Logit and Second Derivative Estimation Results

Standard Approach Our Approach

Variable Full Info Costly Info Costly Info

Price -0.224*** -0.182*** -0.230***

(0.031) (0.017) (0.032)

Discount (-) -0.245*** -0.121*** -0.272***

(0.015) (0.008) (0.055)

Rating 0.350** 0.471*** 0.588***

(0.166) (0.091) (0.171)

Discount (-) / Price 1.094*** 0.665*** 1.183***

(0.156) (0.075) (0.214)

N 980 2940 2940

Note: The table shows estimation results from a standard logit model
estimated on the full information and costly information treatments in
columns 1 and 2, and Bernstein polynomials estimation of the second-
derivative ratio on the costly information treatment in column 3. The
minus sign indicates that discount is multiplied by -1 so that the co-
efficient on discount should equal that of price under full information.
Standard errors on the discount coefficient and the ratio of the dis-
count and price coefficients are computed using 250 bootstrap draws.
∗∗∗ denotes significance at the 1% level, ∗∗ at 5% level, and ∗ at 10%.
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average discounts of $6.46.25 In other words, we can accurately predict how consumers will respond to

information provision before the information is provided. We can also compute the dollar equivalent

welfare benefits of providing consumers with information. To do so, we take our estimates from column

1 as the normative preferences (i.e., as the correct metric to compute consumer welfare) and calculate

by how much welfare changes when consumers go from making partially uninformed choices to fully

informed choices using the approach in Appendix G. We then repeat this exercise using the estimates

from column 3 as the normative preferences. We estimate an average welfare gain of $0.18 per choice

based on column 1 and of $0.25 based on column 3. Thus, our model again yields results that are

fairly close to those coming from the “true” fully informed choices in the data.26

As in most real-world settings, expected utility is not observable to the econometrician in our

experiment: while we can see attributes of the goods in question, we do not know how individuals

will weigh these attributes, nor do we know their preferences for specific genres or book titles and

images (captured by ϵij in our model). The assumption that consumers search in descending order

of expected utility is substantive and could be violated in numerous ways: users might always reveal

discounts for the lowest priced book first or they might search in the order in which books are displayed.

Nonetheless, our “robust” estimation approach succeeds in recovering the preferences that consumers

reveal in the full information condition. In Appendix I, we report results from the test discussed in

Section 4.3, showing additionally that the estimated choice probabilities lie within the upper and lower

bounds implied by our expected utility assumption. Thus, we fail to reject the assumption.

8 Field Validation

Our lab experiment demonstrates one setting where our approach correctly identifies hidden attributes

and forecasts how consumers will respond to information about hidden attributes. Of course, this

leaves open the question of whether we can identify preferences in real-world settings with a larger

number of goods, where search costs are implicit and potentially heterogeneous, and where we (as

experimenters) cannot strictly control the information available to consumers.

In this section, we investigate these issues using publicly available data from a leading online travel

agency, Expedia (Ursu 2018).27 The data we use includes transactions from 54,648 consumers over an

eight-month period between November 1, 2012, and June 30, 2013.28 At the time, consumers would

search for a hotel in a given city, and Expedia would present a list of available options. On the list,

25We look at differences in discounts as opposed to final prices paid since the latter are essentially the same in the full
information and in the costly information conditions.

26Note that the benefits are smaller than the increase in discounts because information induces consumers to be more
responsive to discounts, sacrificing some value on unobservable factors. Further, we put the word “true” in quotes because
the full information logit may be misspecified even in column 1 due to, e.g., correlation in ϵ across products.

27The data is available for download at https://www.kaggle.com/c/expedia-personalized-sort/data.

28This is the final dataset. Appendix J.1 contains details of data cleaning and variable descriptions.
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consumers observe a range of hotel characteristics including the price per night, whether the hotel is

on promotion or part of a chain, star rating, and the review score.

One attribute, location, is not visible to consumers in the search results but is only visible with

additional effort, either clicking on the hotel or clicking to open a map showing unlabeled pins, and

then finding the pin of a hotel. The dataset contains a measure of location desirability, but this measure

is not visible to consumers in the search results. We thus ask: can our testing approach in Lemma 4

correctly recover that location is a hidden attribute, whereas other attributes are directly visible on

the search results page?

Note that while the expected utility assumption is not ex ante unreasonable in this setting, there

are several ways that it might be violated. The most obvious is that the ranking of hotels in search

results might matter directly, and we allow for this in an extension below. Consumers may ignore the

search results and click on a map, where they can see location but not the other attributes of hotels

(a very different search process). Or consumers might make errors, such as searching lower priced

hotels first with no consideration for how expected location varies with price. While we cannot observe

these behaviors directly, we will construct bounds on choice probabilities implied if the expected utility

assumption is satisfied.

Table 3 provides summary statistics. Hotels on average charge $162 per night, with 3.5 stars and

a review score of 4 out of 5. 64% of the hotels belong to a chain, and 34% of the hotels display a

promotion. Location attractiveness is a score ranging from 0 to 7 designed by Expedia to measure

how centrally a hotel is located, what amenities surround it, and other aspects of location desirability.

The average hotel has a location score of 3.26. Figure 2 illustrates how hotel characteristics appear to

consumers in search. Note that information on features like price, stars, review score, and promotion

flag are saliently displayed. However, consumers do not observe the detailed map unless they click,

and the quantitative location score is not shown. In order to evaluate the attractiveness of a location,

consumers need to spend time and effort to examine the map.

Figure 2: Hotel Characteristics Shown in the Search Impression

We consider choices with the following utility specification:

Uij = x̃j · α̃+ xj · α+ zj · β + ϵij (18)

where ϵij is type-I extreme value and x̃j is the vector of attributes which we always model as visible,
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Table 3: Summary Statistics

Observations Mean Median SD Min Max

Price ($) 546,480 162.11 139.57 92.94 10 1000

Stars 546,480 3.42 3.00 0.91 0 5

Review Score 546,480 4.01 4.00 0.71 0 5

Chain 546,480 0.64 1.00 0.48 0 1

Location Score 546,480 3.26 3.22 1.45 0 7

Promotion 546,480 0.34 0.00 0.47 0 1

including the chain, promotion, and position dummies.

Table 4: Model Specifications

Model xj zj

I Price, Stars, Review Score Location Score

II Stars, Review Score, Location Score Price

III Price, Stars, Location Score Review Score

IV Price, Review Score, Location Score Stars

For the four remaining variables — stars, review score, location score, and price — we estimate

four models where one of these variables plays the role of zj in our model (i.e., it may only be revealed

after search), and the other three serve as xj (i.e., they are assumed to be known pre-search). Table 4

shows the model specifications. We start by assuming that consumers don’t form expectations on the

hidden attribute based on the visible attributes, and relax this assumption in a robustness check. We

estimate each model using the “flexible logit” approach described in Section 5.2. Since we have several

different x variables for each model, in order to increase power, we estimate β by taking derivatives

with respect to each individual x variable and then average the results (step 6 of Table 1).29

Figure 3 shows the estimates from standard logit and flexible logit for each candidate z variable.30

Location score is the only variable where we see clear evidence that standard logit is attenuated

relative to flexible logit, which is consistent with the fact that location is not immediately available

to consumers in the results page. Thus, standard logit tends to underestimate how much consumers

value location. On the contrary, for the visible attributes – price, review score and star rating – we

find that the flexible logit confidence intervals include the standard logit estimates, and the differences

between flexible logit and standard logit estimates are not significantly different from zero.

Given the evidence that location is a hidden attribute, we use our estimates of consumer prefer-

ences to compute how information about location will change behavior and choice quality. Table 5

29Appendix J.2 contains a step-by-step guide for computing the point estimates and confidence intervals.

30Values are reported in Appendix J.3.
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Figure 3: Estimation Results

(A) β Estimates (B) Difference in Magnitude of β Estimates

Note: In Panel A, we report 95% confidence intervals for the coefficient β for different choices of the z variable. In each
case, we normalize the coefficient by multiplying it by the standard deviation of the variable. In Panel B, we report 95%
confidence intervals for the difference between the absolute value of the normalized β estimate from flexible logit and the
absolute value of the corresponding standard logit estimate.

shows the counterfactual results when we make the location score information visible to all consumers.

The average location score among transacted hotels increases from 3.32 in the data to 3.41 in the

counterfactual scenario where location is fully visible. Further, using the approach in Appendix G,

we compute the welfare benefits of providing consumers with location score information. We estimate

an average welfare gain of $2.20 per choice, which is 1.6% of the average transaction price. Interest-

ingly, the average price paid is higher in the status quo relative to the full-information counterfactual,

suggesting that the platform is benefiting from consumers’ imperfect information.

Table 5: Counterfactual Results

Status quo Counterfactual

Average Value for the Transacted Item

Price ($) 143.52 137.06

Stars 3.47 3.42

Review Score 4.03 4.03

Chain 0.64 0.64

Promotion 0.40 0.39

Position 4.55 4.91

Location Score 3.32 3.41

Welfare Difference per Choice ($) - 2.20

Note: Average value of different attributes for the transacted item in the data (first column) and in the counterfactual
scenario where consumers have full information on location (second column). The last row reports the average welfare
change from the status quo to the counterfactual.

In Appendix J.4, we conduct a series of additional analyses to check the robustness of the results.
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Specifically, we show that our results qualitatively do not change if: (i) we allow consumers to form

expectations about location based on the other attributes (i.e., γ1 ̸= 0); (ii) we let the position of the

hotel on the results page affect the order of search as in Section 3.2; (iii) we let the idiosyncratic term ϵij

be revealed to consumers only after search (Section 3.3). Additionally, (iv) we report results from the

test discussed in Section 4.3 and show that the estimated choice probabilities almost always lie within

the upper and lower bounds implied by the assumption that consumers search in descending order of

expected utility. Further: (v) we check whether consumers who searched good 1 are systematically

different from others by comparing the total number of clicks conditional on searching good 1, and

find that they do not behave differently from other consumers; (vi) we explore robustness to how much

data we use to estimate the coefficients on the visible attributes (which theoretically requires z̃j = z̄):

we find that the estimates from flexible logit are stable as we vary the amount of data, and significantly

different from the standard logit estimates; and (vii) we present a test of whether the estimates of the

β coefficient on the location score vary across choices of which x variable is used to construct our ratio

of second derivatives. We fail to reject the null hypothesis that the estimates obtained from different

choices of x variables are equal.

9 Conclusion

We give sufficient conditions to estimate preferences using only data on attributes and choices in

cross-sectional or panel data even when consumers must search to acquire information about product

attributes. The approach is robust in the sense that it works regardless of whether consumers have

full information or engage in search based on a broad class of search protocols. Further, our results

can be used to test whether consumers are fully or only partially informed about a given attribute.

Because our conditions allow preferences to be recovered when consumers are imperfectly informed,

our results allow a wide range of inquiries that are impossible using conventional methods. First, prior

to conducting an information intervention, choice data can be used to estimate counterfactually how

consumers would choose were they fully informed. Further, our approach can be used to conduct

reliable welfare analyses that are based on consumers’ true preferences as opposed to the preference

estimates obtained from standard methods assuming full information, which may be confounded by

consumers’ lack of information.

In many settings, our assumptions may not be exactly satisfied, but these must be assessed relative

to the alternatives. The vast majority of empirical work currently makes the often dubious assumption

that consumers are fully informed about all attributes of products.31 Even if one lacks contextual

information to support our assumption that consumers search in descending order of expected utility,

31We count 350 articles published in the AER, QJE, JPE, ECTA or ReStud since 2015 that estimate discrete choice
models. Of these 350, 315 (90%) assume that consumers are fully informed. The list of papers and their classification is
available upon request from the authors.
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our approach is much weaker than the standard assumption of full information and may be preferable

in settings where estimates of preferences are needed to conduct welfare analysis.

Relative to methods based on the full information assumption, the main downside of our approach is

that it is more demanding of the data and places limits on the extent of consumer heterogeneity allowed.

For example, our identification arguments require that consumers agree about whether the possibly

hidden attribute is good or bad and; further, recovering the distribution of preference heterogeneity

requires parametric restrictions or very large datasets.

A second shortcoming of our approach currently is the ad hoc nature of the “flexible logit” estima-

tion procedure that we use in large choice sets. We find that this functional form works well in a range

of simulations, but we have not stated formal assumptions under which this estimation procedure will

recover the true choice probability function. One implication of our theory is that the strong assump-

tions made in existing parametric models about cross-derivatives rule out realistic behavior. Work

clarifying the formal assumptions necessary to relax these restrictions while maintaining scalability in

large choice sets would be welcome.

Our assumptions are sufficient for identification but not necessary, raising many questions: are

there other conditions aside from the expected utility assumption which permit analogous data-driven

identification of consumers who maximize utility? Are there necessary and sufficient conditions for

preferences to be recoverable from choice data when consumers have partial information? Finally, our

approach could be combined with consideration sets methods to allow for imperfect information at

both the attribute and the product level. This may be desirable to assess information interventions

that inform both about the attributes of products and about which alternatives exist.

36



References

Abaluck, J. and A. Adams (2017). What do consumers consider before they choose? identification

from asymmetric demand responses. Technical report, National Bureau of Economic Research.

Abaluck, J. and J. Gruber (2009). Choice inconsistencies among the elderly: Evidence from plan

choice in the medicare part d program (working paper# 14759). Cambridge, MA: National

Bureau of Economic Research. Retrieved from http://www. nber. org/papers/w14759. doi 10,

w14759.

Abaluck, J. and J. Gruber (2011). Choice inconsistencies among the elderly: evidence from plan

choice in the medicare part d program. The American economic review 101 (4), 1180–1210.

Ackerberg, D. (2003). Advertising, Learning, and Consumer Choice in Experience Good Markets:

An Empirical Examination. International Economic Review 44.

Agarwal, N. and P. J. Somaini (2022). Demand analysis under latent choice constraints. Technical

report, National Bureau of Economic Research.

Ai, C. and X. Chen (2007). Estimation of possibly misspecified semiparametric conditional moment

restriction models with different conditioning variables. Journal of Econometrics 141 (1), 5–43.

Allcott, H., B. B. Lockwood, and D. Taubinsky (2019). Regressive sin taxes, with an application to

the optimal soda tax. The Quarterly Journal of Economics 134 (3), 1557–1626.

Allcott, H. and D. Taubinsky (2015). Evaluating behaviorally motivated policy: Experimental evi-

dence from the lightbulb market. American Economic Review 105 (8), 2501–38.

Allen, R. and J. Rehbeck (2020). Identification of random coefficient latent utility models. arXiv

preprint arXiv:2003.00276 .

Anderson, S. P., F. Ciliberto, and J. Liaukonyte (2013). Information content of advertising: Em-

pirical evidence from the otc analgesic industry. International Journal of Industrial Organiza-

tion 31 (5), 355–367.

Armstrong, M. (2017). Ordered consumer search. Journal of the European Economic Associa-

tion 15 (5), 989–1024.

Bagwell, K. (2007). Chapter 28 The Economic Analysis of Advertising. Handbook of Industrial

Organization 3, 1701–1844.

Barseghyan, L., M. Coughlin, F. Molinari, and J. C. Teitelbaum (2021). Heterogeneous choice sets

and preferences. Econometrica 89 (5), 2015–2048.

Becker, G. S. and K. M. Murphy (1993). A Simple Theory of Advertising as a Good or Bad. The

Quarterly Journal of Economics 108 (4), 941–964.

37



Berry, S., A. Gandhi, and P. Haile (2013). Connected substitutes and invertibility of demand. Econo-

metrica 81, 2087–2111.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium. Economet-

rica: Journal of the Econometric Society , 841–890.

Berry, S. T. and P. A. Haile (2014). Identification in differentiated products markets using market

level data. Econometrica 82 (5), 1749–1797.

Berry, S. T. and P. A. Haile (2020). Nonparametric identification of differentiated products demand

using micro data. Technical report, National Bureau of Economic Research.

Branco, F., M. Sun, and J. M. Villas-Boas (2012). Optimal search for product information. Man-

agement Science 58 (11), 2037–2056.
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Appendix A: Additional Proofs

In this appendix, we collect the proofs not included in the main text. Throughout, we let J ≡
{1, . . . , J} and often drop the i subscript for notational simplicity.

Here’s a table with some of the notation used in the proofs.

Table 6: Notation

Notation Definition Appendix

P4 P (U1 ≥ Uk ∀k) A.1

PS
5 P ({U1 ≥ Uk∀k} ∩ {EUj ≥ EU1 for at least one j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S}) A.1

PS
5,1 P ({U1 ≥ Uk ∀k} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S}) A.1

PS
5,2 P ({EU1 ≥ EUj for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S}

∩{g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S}) A.1

P ∗
j,2 P ({Uj ≥ U−j} ∩ {EU−j ≥ EUj} ∩ {gi(xj , ϵj , U−j) ≤ 0}) A.2

P ∗
j,3 P ({U−j ≥ Uj} ∩ {EUj ≥ EU−j} ∩ {gi(x−j , ϵ−j , Uj) ≤ 0}). A.2

P4new, P
S
5new, Analog of P4, P

S
5 , P

S
5,1, P

S
5,2 with observables impacting search but not utility

PS
5new,1, P

S
5new,2 A.5

P1,sim P (U1 ≥ U2) A.7

P2,sim P ({U1 > U2} ∩ {EU2 > EU1} ∩ {gsim(EU1 − EU2) < 0}) A.7

P4,out, P
S
5,out, Analog of P4, P

S
5 , P

S
5,1, P

S
5,2 with outside option available without search

PS
5,1,out, P

S
5,2,out A.9

P6,out P ({U1 ≥ Uk ∀k ∈ J ∪ {0}} ∩ {g(x1, ϵ1, U0) ≤ 0}) A.9

A.1 Proof of Lemma 2 when J ≥ 2

In this section, we prove Lemma 2 for the more general case in which J ≥ 2.

Proof. Let J−1 ≡ {2, . . . , J}, ũj ≡ αxj + βzj for all j, and ũ ≡ (ũ1, . . . , ũJ). Similarly, we let

ẽuj = βγ0+(α+βγ1)xj and ẽu = (ẽu1, . . . , ẽuJ). Then, by (3) we can write for all (x, z) with z̃1 ≥ z̃j
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for all j:

s1 = P (U1 ≥ Uk ∀k)−
∑

S⊂J−1,S̸=∅

P ({U1 ≥ Uk∀k} ∩ {EUj ≥ EU1 for at least one j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S})

≡ P4 (ũ)−
∑

S⊂J−1,S̸=∅

PS
5 (ũ, ẽu, x1)

(19)

Further, for every S ⊂ J−1,S ≠ ∅, we have

PS
5 = P ({U1 ≥ Uk ∀k} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S})−

P ({U1 ≥ Uk ∀k} ∩ {EU1 ≥ EUj for all j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S})

= P ({U1 ≥ Uk ∀k} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S})−

P ({EU1 ≥ EUj for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J−1\S})

≡ PS
5,1 (ũ, x1)− PS

5,2 (ũ−1, ẽu, x1)

where ũ−1 ≡ (ũ2, . . . , ũJ). The first equality follows from basic set algebra while the second follows

from the fact that for all j ∈ S and all k ∈ J−1\S, (i) EU1 ≥ EUj implies U1 ≥ Uj since z̃1 ≥ z̃j

for all j ∈ J−1; and (ii) g (x1, ϵ1, Uk) ≥ 0 ≥ g (x1, ϵ1, Uj) implies Uk ≤ Uj , which (together with the

implication in (i)) implies U1 ≥ Uk. Thus, the event U1 ≥ Uk ∀k ∈ J−1 is implied by the other events

inside the probability and can be dropped. Now, note that PS
5,2 does not depend on z1 and that PS

5,1

— as well as P4 — only depends on xj and zj via ũj . Thus, the result follows from the chain rule. As

in Lemma 2, identification of the distribution of ϵ is obtained by considering choice sets in which z̃k is

the same for all k and varying x.

A.2 Proof of Lemma 3

Let P ∗
j,2 be the probability of failing to search — and thus choose — good j even if it is utility

maximizing, and P ∗
j,3 be the probability of choosing j even when it is not utility-maximizing (i.e., failing

to search another, higher-utility good). Then, sj = P (Uj ≥ Uk∀k) − P ∗
j,2 (ũ, ẽu,x) + P ∗

j,3 (ũ, ẽu,x),

where ũj = αxj + βzj , ũ ≡ (ũ1, . . . , ũJ), ẽuj = βγ0 + (α + βγ1)xj , ẽu ≡ (ẽu1, . . . , ẽuJ). Note that

P ∗
j,2 and P ∗

j,3 depend on x via three channels: via the deterministic part of the utilities (ũ), via the

deterministic part of the of the expected utilities (ẽu), and directly via the gi function, i.e. the decision
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of whether or not to search the various products. Differentiating, we obtain:

∂sj
∂zj

= β

[
∂P (Uj ≥ Uk∀k)

∂ũj
−

∂P ∗
j,2

∂ũj
(ũ, ẽu,x) +

∂P ∗
j,3

∂ũj
(ũ, ẽu,x)

]
∂sj
∂xj

= α

[
∂P (Uj ≥ Uk∀k)

∂ũj
−

∂P ∗
j,2

∂ũj
(ũ, ẽu,x) +

∂P ∗
j,3

∂ũj
(ũ, ẽu,x)

]
−

∂P ∗
j,2

∂xj
(ũ, ẽu,x) +

∂P ∗
j,3

∂xj
(ũ, ẽu,x)

−(α+ βγ1)
∂P ∗

j,2

∂ẽuj
(ũ, ẽu,x) + (α+ βγ1)

∂P ∗
j,3

∂ẽuj
(ũ, ẽu,x) .

Note that
∂P (Uj≥U−j)

∂ũj
− ∂P ∗

j,2

∂ũj
(ũ, ẽu,x) +

∂P ∗
j,3

∂ũj
(ũ, ẽu,x) =

∂sj
∂ũj

≥ 0.32 Further,
∂P ∗

j,2

∂xj
(ũ, ẽu,x) ≤ 0

and
∂P ∗

j,3

∂xj
(ũ, ẽu,x) ≥ 0 due to our assumptions about the function g. Finally,

∂P ∗
j,2

∂ẽuj
(ũ, ẽu,x) ≤ 0 and

∂P ∗
j,3

∂ẽuj
(ũ, ẽu,x) ≥ 0 by Assumption 2(i). Therefore, normalizing α = 1, we obtain

∣∣∣ ∂sj∂zj
/

∂sj
∂xj

∣∣∣ ≤ β under

the assumption that α + βγ1 ≥ 0. One can show that
∣∣∣ ∂sj∂zk

/
∂sj
∂xk

∣∣∣ ≤ β for k ̸= j using an analogous

argument.

A.3 Identifying good 1 when zj is vector-valued in the linear homogeneous case

For simplicity, the results in the main text are for the case where zj is scalar-valued for all goods j. This

implies that one can label good 1 as the good with the highest value of z̃ without loss of generality. As

we have noted, if there are multiple z attributes per good, then our results apply if the data contains

one choice set where one good is preferable to all other goods on each of the z̃ attributes. This is not

without loss.

The basic idea of our approach is that one can define a weighted average of the relevant z′s where

the weights are recoverable from first derivatives. Then, we proceed as usual, defining good 1 as the

good with the highest value of this weighted average. More formally, let zkj be the k−th hidden

attribute of good j and let βk be the associated preference parameter. As above, let ũj = αxj + βzj .

By Assumption 2, we can write sj = fsj (ũ1, . . . , ũJ , x1, . . . , xJ) for all j and thus
∂sj
∂zkj

=
∂fsj
∂ũj

βk,

implying
∂sj
∂zkj

/
∂sj

∂zk′j
= βk/βk′ for all k, k′. This means that we can compare the hidden component of

utility across goods. Specifically, letting β1 > 0 without loss, we have that, for any pair of goods j

and j′,
∑

k βkz̃kj ≥
∑

k βkz̃kj′ if and only if z̃1j − z̃1j′ +
∑

k>1
βk
β1

(
z̃kj − z̃kj′

)
≥ 0. Since the left-hand

side of the last inequality is identified, we can rank goods based on the component of utility that is

not known pre-search. Lemma 2 then applies by defining good 1 as the good with the highest value

of
∑

k βkz̃kj . Note that such a good always exists in any choice set (excluding ties) since
∑

k βkz̃kj is

scalar-valued.

32Increasing ũj can only switch consumers from not choosing good j to choosing j but never the reverse. To see this,
note first that conditional on searching any given set of goods, increasing ũj increases the probability that good j is
chosen. Second, changing ũj doesn’t change the probability that good j is searched, which depends on gi(xj , ϵj , U−j)
for each alternative searched good. Third, changing ũj never makes other goods more likely to be searched. Specifically,
an alternative good k is searched if and only if gi(xk, ϵk, Uk′) ≥ 0 for all goods k′ currently searched. This quantity is
unchanged for k′ ̸= j and weakly decreasing for k′ = j, so no good can become more likely to be searched. Therefore,
∂sj
∂ũj

≥ 0.
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A.4 Endogenous attributes

Here, we show how to extend our results to the case where some product attributes are endogenous

(Section 3.1). Consistent with standard results on nonparametric identification of demand with endo-

geneity (Berry and Haile (2014)), we assume the data contains information about choice probabilities

across many markets. This is in contrast to the case without endogeneity where just six markets are

in principle sufficient. We start by considering the case where price is visible prior to search. Letting

δ = (δ1, . . . , δJ) where δj is defined in Assumption 3(i) and z̃j = zj − (γ0 + γ1xj + γ1,ppj), we may

write the choice probability of good j as

sj = σj (δ, z̃) (20)

for some function σj . Repeating this for all j and stacking the equations, we obtain a demand system

of the form

s = σ (δ, z̃) (21)

where s = (s1, . . . , sJ). We also define the choice probability of the outside option as s0 ≡ 1−
∑J

j=1 sj ,

with associated function σ0 (δ, z̃). We establish nonparametric identification of this demand system by

invoking results from Berry and Haile (2014) (henceforth, BH).33 Specifically, the results in BH yield

identification of (ξj)
J
j=1 for every market in the population. This means that all the arguments of σ are

known, which immediately implies (nonparametric) identification of σ itself. Once σ is identified, one

may apply our results in Section 2.2 to identify the preference parameters α, β and λ. Note that, while

knowledge of σ is sufficient for several counterfactuals of interest (e.g., computing equilibrium prices

after a potential merger or tax), the preference parameters are required to predict how choices and

welfare would change if consumers were given full information, among other things. In this sense, our

approach complements the identification results in BH within the class of search models we consider.

To prove identification of σ, we first note that model (20) satisfies the index restriction in BH’s

Assumption 1. Second, we assume that we have excluded instruments w which, together with the

exogenous attributes, satisfy the following mean-independence restriction

E (ξj |x, z̃,w) = 0 for all j (22)

almost surely (Assumption 3 in BH) and assume that the instruments shift the endogenous variables

(choice probabilities and endogenous prices p) to a sufficient degree (as in BH’s Assumption 4). The

endogeneity problem is exactly as in the full information case; thus, all of the instruments that are

commonly used (e.g., cost shifters, exogenous attributes of competing products, Hausman instruments)

33See also Berry, Gandhi, and Haile (2013).
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can be invoked in our context. Finally, we verify that the demand system satisfies the “connected

substitutes” restriction defined in BH’s Assumption 2. To this end, we prove the following result.

Lemma 5. Let utility be given by (10) with ϵi supported on RJ and let Assumptions 2(i), 2(iii), 2(iv),

and 3(i) hold. Then, for all j, k = 1, . . . , J with j ̸= k, σj is (i) strictly increasing in δj and (ii) strictly

decreasing in δk.

Proof. Fix (δj , zj) for all j. To prove claim (i), we show that an increase in δj can only induce a

consumer to switch from not choosing j to choosing j but never vice versa, and that a positive mass of

consumers will switch to choosing j. To see this, consider the case where consumer i initially searches

j, which happens if and only if gi (δj , ϵij , Uik) ≥ 0 for all k such that EUik ≥ EUij . Let ∆ ≥ 0 be

the change in δj . Since gi is increasing in its first argument, we have gi (δj +∆, ϵij , Uik) ≥ 0 for all k

such that EUik ≥ EUij + ∆ and thus i will still search j. Moreover, since gi is decreasing in its last

argument, if gi (δk, ϵik, Uij) ≤ 0 for some k such that EUik ≤ EUij (i.e., if k is initially not searched),

then gi (δk, ϵik, Uij +∆) ≤ 0 (i.e., k is also not searched after the change in δj), which means that the

set of goods searched by i never becomes larger. Next, note that if Uij ≥ Uik for all k in the set of

searched goods Gi, then Uij +∆ ≥ Uik for all k ∈ Gi. Further, since ϵi is supported on all of RJ , there

is a positive mass of consumers for which Uik ≥ Uij for some k ∈ Gi, but Uij +∆ ≥ Uik for all k ∈ Gi.

An analogous argument proves claim (ii).

Lemma 5 implies that the goods are connected substitutes in δ (see Definition 1 in BH), which in

turn allows us to prove identification of σ by invoking Theorem 1 in BH.34 Specifically, we can invert

the demand system σ for the indices δ and write

βγ0 + (α+ βγ1)xj + (λ+ βγ1,p)pj + ξj = σ−1
j (s, z̃) (23)

for all j. Equations (22) and (23) naturally lead to a nonparametric instrumental variable approach

to pin down σ−1
j (and thus σj).

35

Nothing in the argument above hinges on the fact that prices are visible to consumers prior to

search. In particular, when consumers need to search to reveal prices, zj = pj and equation (21)

becomes

s = σ (δ, p̃) ,

where δj is defined in Assumption 3(ii) and p̃ denotes the vector of the components of prices not

expected by consumers prior to search. Since the proof of Lemma 5 continues to apply if Assumption

34Note that the proof of Theorem 1 in BH only uses the fact that goods are connected substitutes in δ, not in −p.

35Compiani (2022) proposes to approximate σ−1
j using Bernstein polynomials. We use a similar approach in Section

5 to estimate the demand function for the case without endogeneity.
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3(i) is replaced with 3(ii), one can follow the argument above to identify the function σ when prices

are only revealed via search.

A.5 Identification when Observables Impact Search but not Utility

Here, we state and prove the results described in Section 3.2. We make the following assumptions:

Assumption 4. (i) If consumer i searches j, then i also searches all j′ s.t. m
(
EUij′ , rj′

)
≥ m (EUij , rj),

where m is strictly increasing in both arguments;

(ii) There is at least one good j ̸= 1 such that rj > r1;

(iii) The support of (x, z)
∣∣∣r has positive Lebesgue measure for all r ≡ (r1, . . . , rJ).

(iv) The search model admits a discrete choice representation that also satisfies the independence

of irrelevant alternatives (IIA) property.

Assumption 4(iii) means that, for identification purposes, we consider variation in product char-

acteristics holding fixed product search position. In practice, search position is likely to vary as a

function of observables (e.g., products are sorted in order of price). However, because of the discrete

nature of search position, we are likely to see variation conditional on search position and this is the

variation we will use to identify our model. Assumption 4(iv) requires that consumers’ search behavior

can be represented as a standard discrete choice model satisfying IIA. As shown in Armstrong (2017),

the Weitzman (1979) sequential search model (see Example 1) can be represented as a discrete choice

model where consumers maximize product-specific indices defined as the minimum between the utility

and the reservation value for each product. Then, Assumption 4(iv) is satisfied by letting the ϵij be

Gumbel distributed.

If the order in which consumers search does not just depend on the expected utilities, but on the

variable r as well, Lemma 1 will no longer hold as stated: the good with the highest value of z̃j can

be searched, another good j′ may have higher utility (and thus higher expected utility), but good j′

may not be searched because it has lower search position. However, an extension of Lemma 1 will still

hold in this case, which then allows us to prove identification of preferences.

Lemma 6. Let Assumptions 1, 2(ii)-2(iv), and 4 hold. Then, if consumer i searches good 1 (i.e., the

good with the highest value of z̃), then i chooses the good which maximizes utility among all goods with

rj ≥ r1.

Proof. Suppose there was a good j with rj > r1 and Uij > Ui1 that consumer i does not search. We

can follow the proof of Lemma 1 to show that EUij > EUi1. By Assumption 4(i), this implies that

good j is searched, which is a contradiction.

In words, if higher search position only makes a good more likely to be searched, then goods with

higher utility and higher search position will always be searched if good 1 is searched. Given this
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lemma, we can apply a modification of the identification argument in Lemma 2 after conditioning on

the subset of goods with higher search position than good 1. As in Lemma 2, we impose a location

normalization (ϵij̃ = 0 for some j̃ and all i) and a scale normalization (α = 1).

Lemma 7. Let the assumptions of Lemma 6 hold. Let s1|R denote the choice probability for good 1

conditional on consumers choosing in R = {j : rj ≥ r1} and assume that
∂2s1|R
∂z1∂xj∗

(x∗, z∗, r∗) ̸= 0 for

some (x∗, z∗, r∗) and j∗ ̸= 1 and that s1|R is twice differentiable. Then, β is identified. Addition-

ally, the distribution of ϵ is nonparametrically identified if the support of
(
ϵk − ϵj̃

)
k ̸=j̃

is a subset

of

{
(α+ βγ1)

(
xj̃ − xk

)
k ̸=j̃

: γ1(xj̃ − xk)k ̸=j̃ =
(
zj̃ − zk

)
k ̸=j̃

for some (x, z) in its support

}
and the

supports of z̃ and r contain a point such that z̃j = z̃k and rj = rk for all j, k, respectively.

Proof. Under Assumption 4(iv), the choice probability for good 1 conditional on consumers choosing

in R, s1|R, is equal to the choice probability for good 1 if consumers only faced R as their choice set.

Further, by Lemma 6, the only mistake a consumer can make when faced with choice set R is to fail to

search good 1 when it is in fact the good with the highest utility in R. Thus, letting R−1 = R \ {1},
we can write for all (x, z) with z̃1 ≥ z̃j for all j:

s1|R = P (U1 ≥ Uk ∀k ∈ R)−
∑

S⊂R−1,S̸=∅

P ({U1 ≥ Uk∀k ∈ R} ∩ {m(EUj , rj) ≥ m(EU1, r1) for some j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ R−1\S})

≡ P4new (ũ)−
∑

S⊂R−1,S̸=∅

PS
5new (ũ, ẽu, x1, r) .

(24)

Further, for every S ⊂ R−1,S ≠ ∅, we have

PS
5new = P ({U1 ≥ Uk ∀k ∈ R} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ R−1\S})−

P ({U1 ≥ Uk ∀k ∈ R} ∩ {m(EU1, r1) ≥ m(EUj , rj) for all j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ R−1\S})

= P ({U1 ≥ Uk ∀k ∈ R} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ R−1\S})−

P ({m(EU1, r1) ≥ m(EUj , rj) ∀j ∈ S} ∩ {g (x1, ϵ1, Uj) ≤ 0 ∀j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 ∀j ∈ R−1\S})

≡ PS
5new,1 (ũ, x1, r)− PS

5new,2 (ũ−1, ẽu, x1, r) ,

where ũ−1 ≡ (ũ2, . . . , ũJ). The first equality follows from basic set algebra while the second follows from

the fact that the event {U1 ≥ Uj ∀j ∈ R} is implied by the other events inside the second probability,

since (i) if j ∈ S, then m(EU1, r1) ≥ m(EUj , rj) implies EU1 ≥ EUj , which in turn implies U1 ≥ Uj ;

(ii) if j /∈ S, then g (x1, ϵ1, Uj) ≥ 0 ≥ g (x1, ϵ1, Uk) for all k ∈ S implies Uj ≤ Uk. Note that PS
5new,2

does not depend on z1 and PS
5new,1 (ũ, x1, r) only depends on xj and zj via ũj for j ̸= 1, so that

∂2s1|R
∂z1∂zj∗

(x∗, z∗, r∗)
/

∂2s1|R
∂z1∂xj∗

(x∗, z∗, r∗) = β
α . Note that s1|R can be estimated by taking R as the choice

set faced by consumers and dropping those consumers that choose products outside R. Thus, β
α is

identified, and so is β given the normalization α = 1. Finally, we identify the distribution of ϵ by looking
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at choice sets in which z̃j = z̃ and rj = r for all j. Consumers facing such choice sets always choose

the utility-maximizing good, since the first good they search — the one that maximizes m(EUj , rj) —

also maximizes utility. Thus, by varying x, we can identify the distribution of ϵ just like in Lemma 2.

Note that if the support of r does not contain points where rj = r for all j (which would be the case

if, e.g., r is a product’s rank on the webpage), this last step requires extrapolation outside the support

of r and thus cannot be done nonparametrically. Further, even when this is not an issue, restricting

attention to the slice of the data around rj = r for all r is likely to lead to slower-than-parametric

convergence rates.

A.6 Unobservables revealed by search

Here, we show that the ratio of second derivatives in (4) robustly identifies β
α in the model where ϵij

is revealed to consumer i only upon searching good j (Section 3.3). Order goods in increasing order

of x. Then, if α+ βγ1 ≥ 0, consumers search in descending order of x. Thus, for j = 1, . . . , J ,

sj =

j∑
k=1

P ({Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}} ∩ {search exactly k, . . . , J})

=

j∑
k=1

P ({Uj ≥ Uj′ ∀ j′ ∈ {k, . . . , J}} ∩ {g(xh, Uh′) ≥ 0 ∀ h = k, . . . , J − 1;h′ ∈ {h+ 1, . . . , J}} ∩

{g(xh, Uj) ≤ 0 ∀h = 1, . . . , k − 1})

≡
j∑

k=1

P
(k)
j (ũ,x−J) ,

where ũj = αxj + βzj and ũ = (ũ1, . . . , ũJ), as above, and x−J = (x1, . . . , xJ−1). Thus,

∂2sj
∂zj∂zJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
β2

∂2sj
∂zj∂xJ

=

j∑
k=1

∂2P
(k)
j

∂ũj∂ũJ
αβ

Thus, the ratio of the latter two derivatives identifies β
α . Note that the ratio of

∂sj
∂zJ

to
∂sj
∂xJ

for any j

would also work, thus providing a test for the null hypothesis that ϵ is only revealed via search. On

the other hand, for j < J ,

∂sj
∂zj

=

j∑
k=1

∂P
(k)
j

∂ũj
β

∂sj
∂xj

=

j∑
k=1

(
∂P

(k)
j

∂ũj
+

1

α

∂P
(k)
j

∂xj

)
α

(25)
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Since 1
α

∂P
(k)
j

∂xj
≥ 0, (25) implies that the ratio of first derivatives suffers from attenuation bias, i.e.

∂sj
∂zj
∂sj
∂xj

≤ β
α .

A.7 Simultaneous search à la Honka et al. (2017)

While our main model allows for consumers to choose which goods to search in one simultaneous step,

one form of simultaneous search that is not accommodated is that in which a consumer optimally

chooses the number K of goods to uncover and then proceeds to simultaneously search the top K in

terms of expected utility (see Chade and Smith (2006) and, for an application, Honka, Hortaçsu, and

Vitorino (2017)). Our framework from Section 2 does not subsume this model since in this case the

decision of whether or not to search good j depends not only on the expected utility of good j, but on

the expected utility of all other goods as well, thus violating Assumption 2(ii).

In this appendix, we show via an alternative argument that the usual second-derivative ratio from

equation (4) still identifies β
α in the two-good K−rank model. This complements the simulation results

from Appendix D showing that our method succeeds in a model where consumers search the top K

goods (with K varying randomly across consumers).

Consider the simultaneous search model in Honka, Hortaçsu, and Vitorino (2017) with J = 2

goods. In this model, a consumer looks at the expected utilities and decides whether to only search

the good with the highest expected utility or search both goods, which entails a cost c. Consumers

form expectations over the distribution of (z̃1, z̃2), assumed to be independent of everything else. As

usual, we denote by 1 the good with the highest value of z̃.

Note that consumer i searches 2 but not 1 if and only if EUi2 > EUi1 and

Ez̃1,z̃2 [max {EUi1 + βz̃1, EUi2 + βz̃2}]− c < Ez̃2 [EUi2 + βz̃2] ,

i.e.

Ez̃1,z̃2 [max {EUi1 − EUi2 + β (z̃1 − z̃2) , 0}]− c < 0

or gsim (EUi1 − EUi2) < 0 for an increasing function gsim. Equation (5) then can be written as

s1 = P (U1 > U2)− P ({U1 > U2} ∩ {EU2 > EU1} ∩ {gsim(EU1 − EU2) < 0})

= P1,sim − P2,sim

Letting ũj = αxj + βzj and ẽuj = βγ0 + (α+ βγ1)xj , we also have:

∂2s1
∂z1∂z2

= β2

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2

)
(26)
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and

∂2s1
∂z1∂x2

= αβ

(
∂2P1,sim

∂ũ1∂ũ2
− ∂2P2,sim

∂ũ1∂ũ2

)
− (α+ βγ1)β

∂2P2,sim

∂ũ1∂ẽu2
(27)

So, if
∂2P2,sim

∂ũ1∂ẽu2
= 0, then the ratio of (26) to (27) identifies β

α . Note that the event in P2,sim is

equivalent to the following set of inequalities: (i) ϵi1 > ũ2 − ũ1 + ϵi2, (ii) ϵi1 < ẽu2 − ẽu1 + ϵi2, (iii)

ϵi1 < g−1
sim(0) + ẽu2 − ẽu1 + ϵi2, Then, letting ϵ̃ = ϵ1 − ϵ2, we have:

P2,sim =

∫ min(ẽu2−ẽu1,g
−1
sim(0)+ẽu2−ẽu1)

ũ2−ũ1

fϵ̃(ϵ̃)dϵ̃ (28)

By Leibniz’s rule,
∂P2,sim

∂ũ1
= fϵ̃(ũ2 − ũ1) and thus

∂2P2,sim

∂ũ1∂ẽu2
= 0.

Finally, we show that the ratio of first derivatives leads to attenuation bias if α + βγ1 ≥ 0. This

follows directly from

∂s1
∂z1

= β

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1

)
∂s1
∂x1

= α

(
∂P1,sim

∂ũ1
− ∂P2,sim

∂ũ1
− α+ βγ1

α

∂P2,sim

∂ẽu1

)

and the fact that
∂P2,sim

∂ẽu1
< 0.

A.8 Discrete attributes

Our main result applies to the case where one can take derivatives of choice probabilities with respect

to the attribute of various goods, implying that the attributes must be a continuously distributed.

Here, we show that our argument can be extended to the case where attributes are discrete provided

derivatives are replaced with differences and at least one attribute is continuous. We begin with the

the case where z is discrete and there is at least one continuous x attribute (additional discrete x

attributes are allowed).

Let 1 denote one of the goods with the highest value of z̃ in the choice set. When z is discrete,

there can be multiple such goods, but the argument holds for any one of them. Take any data point

(x, z) and let Dδz1 ,z1
s1(x, z) ≡ s1(x, z + δz1) − s1(x, z), where z + δz1 is equal to z except that z1

is increased or decreased by δz1 . By the same argument as in the proof of Lemma 2, Dδz1 ,z1
s1(x, z)

depends on xj and zj for j ̸= 1 only via αxj + βzj (this relies on Lemma 1, which holds regardless of

whether z is discrete or continuous). Thus, as in the continuous case, the marginal rate of substitution
β
α will be identified by looking at how Dδz1 ,z1

s1(x, z) changes as zj and xj vary for j ̸= 1. Specifically,

take a change from zj to zj + δzj and a change from xj to xj + δxj that lead to the same change in

ũj ≡ αxj+βzj . It must be that βδzj = αδxj , implying that β
α =

δxj
δzj

. Thus, given a discrete change δzj ,

finding the corresponding change δxj identifies the marginal rate of substitution. To this end, we look
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at how Dδz1 ,z1
s1(x, z) changes as xj moves continuously. The change δxj is a solution of the following

equation in dxj

Dδz1 ,z1
s1(x+ dxj , z) = Dδz1 ,z1

s1(x, z+ δzj ), (29)

where z+δzj is equal to z except that zj is changed to zj+δzj , and similarly for x+dxj . IfDδz1 ,z1
s1(x, z)

is monotonic in ũj , δxj is the unique solution of (29). More generally, we show in the following lemma

that the system of equations given by (29) for all x, z has a unique solution under a regularity condition

ruling out “pathological cases.”

Lemma 8. If Dδz1 ,z1
s1 is a non-periodic function of αxj+βzj for j ̸= 1, then β

α = β is point-identified.

Proof. Since Dδz1 ,z1
s1 only depends on xj and zj via αxj + βzj for j ̸= 1, fixing all other arguments,

we can write Dδz1 ,z1
s1(x, z) = h(αxj + βzj). Consider a discrete increase δzj in zj and note that an

increase in xj by δxj ≡ β
αδzj will deliver the same change in h. Suppose by contradiction that there

is a δ′xj
̸= β

αδzj that delivers the same change in h for any baseline level of ũj = αxj + βzj . Then, we

have h(ũj +αδ′xj
) = h(ũj + βδzj ) ∀ũj , which holds if and only if h(ũj) = h(ũj −αδ′xj

+ βδzj ) ∀ũj , i.e.
if and only if h is periodic with period −αδ′xj

+ βδzj ̸= 0. Thus, if h is non-periodic, δxj is the only

increase in xj that delivers the same change in h as an increase in zj by δzj for all values of (xj , zj),

implying that β
α is uniquely identified as

δxj
δzj

.

The simulations in Appendix D confirm that this approach delivers consistent estimates of β
α . Here we

outline the steps of this procedure:

1. Estimate the choice probability function for good 1, s1. (Here, we focus on the case where one

is using the nonparametric method of section 5.1, but alternative methods, such as flexible logit,

could be used as well.)

2. For every choice set (x, z) in the data, evaluate s1(x, z + δz1 + δzj ) − s1(x, z + δzj ) for given

increments δz1 and δzj . (Consistent with the notation above, we let z+ δz1 + δzj denote a vector

equal to z except that z1 and zj are increased by δz1 and δzj , respectively).

3. Evaluate s1(x+ δxj , z+ δz1)− s1(x+ δxj , z) and repeat this by varying δxj over a grid of points.

Find the value of δxj that makes this difference as close as possible to the difference s1(x, z +

δz1 + δzj )− s1(x, z+ δzj ) from the previous step. Call this value δ̄xj .

4. Repeat steps 2-3 for every choice set (x, z) in the data and take the ratio of a trimmed mean of

the δ̄xj values to δzj . This is an estimate of β
α .

Finally, note that the argument above continues to hold if we instead assume that z is continuous

and x is discrete. Specifically, by Lemma 1, we have that ∂s1
∂z1

depends on xj and zj only via αxj +βzj .

Thus, assuming that ∂s1
∂z1

is a non-periodic function of αxj + βzj , the argument in Lemma 8 with the

roles of xj and zj flipped shows identification of β
α when z is continuous and x is discrete.
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Regardless of whether x and z are continuous or discrete, conditioning on z̃j being the same across

goods implies that consumers always maximize utility. Thus, we can continue to invoke standard

full-information arguments to identify α.

A.9 Outside option known for free

Here, we show that Lemma 2 can be extended to accommodate an outside option whose utility, U0, is

known for free by consumers. Because Lemma 1 still applies in this case, we can adapt the proof in

Appendix A.1 as follows:

s1 = P (U1 ≥ Uk ∀k ∈ J ∪ {0})−
∑

S⊂J1,S̸=∅

P ({U1 ≥ Uk∀k ∈ J ∪ {0}} ∩ {EUj ≥ EU1 for at least one j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ {J1\S} ∪ {0}})

− P ({U1 ≥ Uk ∀k ∈ J ∪ {0}} ∩ {g(x1, ϵ1, U0) ≤ 0})

≡ P4,out (ũ)−
∑

S⊂J1,S̸=∅

PS
5,out (ũ, ẽu, x1)− P6,out(ũ, x1).

The terms PS
5,out correspond to the case where consumers fail to search good 1 because of a (relatively)

high-utility inside product, whereas P6,out corresponds to the case where they fail to search good 1 due

to the outside option. Next, for every S ⊂ J1,S ≠ ∅, we have

PS
5,out = P ({U1 ≥ Uk ∀k ∈ J ∪ {0}} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ {J1\S} ∪ {0}})−

P ({U1 ≥ Uk ∀k} ∩ {EU1 ≥ EUj for all j ∈ S}

∩{g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ J1\S})

= P ({U1 ≥ Uk ∀k ∈ J ∪ {0}} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ {J1\S} ∪ {0}})−

P ({EU1 ≥ EUj for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≤ 0 for all j ∈ S} ∩ {g (x1, ϵ1, Uj) ≥ 0 for all j ∈ {J1\S} ∪ {0}})

≡ PS
5,1,out (ũ, x1)− PS

5,2,out (ũ−1, ẽu, x1) ,

where the derivation follows from the same argument as in Appendix A.1. The fact that P4,out, P
S
5,1,out

and P6,out only depend on xj and zj via ũj , and that PS
5,2,out does not depend on z1 implies that we

can identify β using the same ratio of second derivatives as in Lemma 2.

To recover the distribution of ϵ, we need to isolate consumers who choose the utility-maximizing

good. As in the baseline model, we achieve this by conditioning on choice sets where z̃j = z̃ for all

j. Under the assumption that consumers always search at least one of the inside goods, our model

implies that consumers always search the good with the highest expected utility, which is also the good

with the highest realized utility when z̃j is the same for all j. Thus, full-information arguments can

be invoked to trace out the distribution of ϵ as in the baseline case.
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A.10 Identification of the distribution of random coefficients

We consider the case where the coefficient β is heterogeneous across consumers with distribution Fβ

and study the identification of Fβ. As in the homogeneous coefficients case, our argument will rely on

being able to identify the good with the most desirable value of the hidden attribute. Thus, we need to

assume that βi has the same sign for all consumers (and assume it is positive without loss). Further,

we assume that at least one x attribute has a homogeneous coefficient α, but allow other x attributes

to have heterogeneous coefficients.36 We start by making the following high-level assumption and then

show that this holds across a range of search protocols.

Assumption 5. Let ∂+ and ∂− denote right and left derivatives, respectively. For some j ̸= 1 and all

h ≥ 1,

∂h+1s1

∂+z1∂−zhj
(x, z) =

∫
fh(x, z;β)β

h+1dFβ(β)

∂h+1s1

∂+z1∂xhj
(x, z) = αh

∫
fh(x, z;β)βdFβ(β),

where fh(x
∗, z∗;β) is constant in β and nonzero at some (x∗, z∗).

A version of the property in Assumption 5 has been used to identify the distribution of random

coefficients in full-information models (e.g., Fox, Kim, Ryan, and Bajari (2012), Allen and Rehbeck

(2020)). Here, we need to ensure that good 1 continues to be the good with the highest value of the

hidden attribute as we differentiate, which is why we need to take right and left derivatives with respect

to z1 and zj , respectively. Under Assumption 5, one can immediately recover all ratios of non-central

moments of β using

∂h+1s1
∂+z1∂−zhj

(x∗, z∗)

∂h+1s1
∂+z1∂xh

j

(x∗, z∗)
=

E(βh+1)

E(β)
, (30)

for h ≥ 2, provided that the mean of β is nonzero (this again uses the normalization α = 1). This

mimics standard arguments for full-information models with some adjustments needed to accommodate

consumer search (in particular, we have to focus on good 1 and take an extra derivative — with respect

to z1 — to get rid of “inconvenient” terms).

Assumption 5 is high-level. We now show that it holds in the search protocols in Examples 1-5.

For simplicity, we consider the case with J = 2 goods.

Sequential search (Example 1): Let f
(h)
ϵ2−ϵ1 be the h−th derivative of the density fϵ2−ϵ1 and

z = inf supp(Z). Then, Assumption 5 is satisfied with fh = (−1)h[1 − Frv(z̃1)]f
(h)
ϵ2−ϵ1(ũ1 − ũ2) and

36Their distribution can be recovered by applying full-information arguments (e.g., Fox, Kim, Ryan, and Bajari (2012),
Allen and Rehbeck (2020)) to choice sets where z̃ is the same for all goods.
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z∗j = z for all j, since at any such z (and any x∗), fh = (−1)hf
(h)
ϵ2−ϵ1(α(x1 − x2)) does not depend on

β. The same argument holds for the directed cognition model (Example 2).

Satisficing (Example 3): Let f
(h)
ϵ2 be the h−th derivative of the density fϵ2 . Then we have

fh = (−1)h
∫
[1− Fτ (ϵ1 + ũ1)]f

(h)
ϵ2 (ϵ1 + ũ1 − ũ2)dFϵ1 , so that Assumption 5 is satisfied with z∗j = 0 for

all j (and any x∗).

Full Information (Example 4): Since fh = (−1)hf
(h)
ϵ2−ϵ1(ũ1 − ũ2), Assumption 5 is satisfied with

any z∗1 = z∗2 (and any x∗).

Simultaneous search (Example 5): Since fh = (−1)h
∫ ∫∞

τ̃−ẽu1
f
(h)
ϵ2 (ϵ1 + ũ1 − ũ2)dFϵ1dFτ̃ , Assump-

tion 5 is satisfied with z∗1 = z∗2 , x
∗
1 = 0 and any x∗2.

These examples show that Assumption 5 holds across a range of search models. However, note that

the values of (x∗, z∗) satisfying the assumption vary with the search protocol. For example, setting

z∗j = x∗1 = 0 for all j works for satisficing, full information and simultaneous search, but not for

sequential search. Thus, this approach requires the researcher to restrict attention to a subset of the

search protocols that our main results for the homogeneous coefficients case applied to. An interesting

avenue for future research would be to devise a data-driven way to find (x∗, z∗), which would allow

one to recover the distribution of random coefficients under weaker restrictions on the search protocol.

The argument above recovers ratios of the non-central moments of β. This requires either fixing

one moment at a given value (which then leads to identification of all other moments) or making some

further assumptions on the distribution of β. We consider three examples here (exponential, log-normal

and discrete β) and show that in each of these cases, it is possible to fully recover the distribution of

β. The order of the derivatives needed for identification, and thus how data demanding the approach

is, will depend on the number of free parameters characterizing the distribution of β.

Lemma 9. Suppose that Assumption 5 holds and that β is drawn from an exponential distribution

with parameter λ. Then, the distribution of β is identified from derivatives of the choice probability

function s1 of order two.

Proof. Since E(β) = 1
λ and E(β2) = 2

λ2 , the right-hand side of equation (30) with h = 1 equals 2
λ ,

implying the conclusion.

Next, in the log-normal case, since this has one additional parameter, it will require derivatives of

up to the third order.

Lemma 10. Suppose that Assumption 5 holds and that β is drawn from a log-normal distribution with

parameters (µ, σ2). Then, the distribution of β is identified from derivatives of the choice probability

function s1 of order up to three.

Proof. Denote by R1 and R2 the left-hand side of (30) for h = 1 and h = 2, respectively. Then, we

have R1 =
e2µ+2σ2

eµ+
σ2
2

, R2 =
e3µ+

9
2σ2

eµ+
σ2
2

, implying µ = 4 logR1 − 3
2 logR2 and σ2 = logR2 − 2 logR1.
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Finally, we consider the case where β is distributed over a known grid β1, . . . , βK . The goal is to

identify the K − 1 weights π1, . . . , πK−1 (which then uniquely determine πK = 1 −
∑K−1

k=1 πk). This

requires at least K − 1 independent equations and thus higher-order derivatives.

Lemma 11. Suppose that Assumption 5 holds and β is distributed over a known grid of strictly positive

values β1, . . . , βK with weights π1, . . . , πK . Then, the distribution of β is identified from derivatives of

order up to K.

Proof. Let βh = (βh
1 , . . . , β

h
K). We write (30) as Ah

Bh
= βh+1·π

β1·π and denote dh ≡ Ahβ
1 − Bhβ

h+1, so

that

dh · π = 0. (31)

Because π is a vector of probability weights, denoting e = (1, . . . , 1), we have e · π = 1. Stacking this

equation and equation (31) for h = 1, 2, ...,K − 1 together, we obtain

D · π = e1, (32)

where D ≡ [e′,d1
′, . . . ,dK−1

′]′ and e1 = (1, 0, . . . , 0)′. This implies that π is identified if the matrix

D is invertible. To this end, for any given K ≥ 2, it can be shown that

det(D) = (−1)
(K−1)(K−2)

2 (ΠK−1
h=1 fh)(Π

K
i=1βi)[Π1≤i<j≤K(βi − βj)]

(
K∑
i=1

πiβi

)K−2

.

using the fact that Ah = fhβ
h+1 · π,Bh = fhβ

1 · π. Therefore, the matrix D is invertible under the

maintained assumptions.

A.11 Utility nonlinear in x

Our practitioner’s guide in Table 1 focuses on the case where the product attributes enter utility

linearly. Here, we show how to extend the approach to the case where x enters utility via polynomials

of degree Kx > 1, i.e. uij =
∑Kx

k=1 αkx
k
j + βzj + ϵij . First, note that by our identification arguments:

∂2s1
∂z1∂zj

(x, z)
/ ∂2s1
∂z1∂xj

(x, z) =
β∑Kx

k=1 kαkx
k−1
j

. (33)

Thus, the ratio on the right-hand side can be recovered based on any sufficiently flexible estimate of

s1. Note that, unlike the case where utility is linear in x, here the denominator involves xj . This

requires changes in our estimators. For the nonparametric approach, step 2 (a) iii of Table 1 must be

modified as follows: we do not average across all values of (x, z) in the data, but rather across values of

(x, z) that all have the same xj . For the flexible logit approach, recall that the weights w in equation

(15) were chosen so that the ratio of second derivatives is a function of the coefficients and not of the

56



specific values of (x, z). When utility is nonlinear in x, we need to relax this restriction; this could be

achieved by choosing the weights in a different way, or alternatively, by including higher powers of xk

for k ̸= 1 in equation (15). This shows that there is a trade-off: being more flexible in how x enters

utility is more demanding of the data. Next, we can condition on the variance of z̃j being below a

cut-off to recover the (αk)
Kx
k=1 coefficients using standard full-information methods (this corresponds

to step 2 (c) (i) in Table 1). Finally, plugging in the estimates of (αk)
Kx
k=1 into (33), one can recover β.
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Supplemental Appendices



Appendix B: Alternative Approaches and Support Assumptions

So far we have not focused on the support assumptions required for identification. These are nonetheless

essential to understand our contribution. Alternative approaches to identification exist which differ

principally in requiring much stronger support assumptions.

For instance, one could assume that the data exhibits “at-infinity” variation to effectively go back

to a setting that is analogous to full information. As the expected utility for a subset of goods grows

to infinity, the probability of searching those goods goes to one under reasonable assumptions on the

search process. Using this, one could identify preferences using conventional arguments. However, in

practice, it is often implausible that any goods are searched with probability close to 1, so this strategy

would require substantial parametric extrapolation.

In contrast, our proof requires much more plausible support assumptions. There is always a good

which maximizes z̃j (or our weighted index in the vector-valued case, see Appendix A.3). To recover

the preference parameters in the homogeneous linear case, we only need sufficient variation to estimate

second derivatives of s1 at a single point. Our arguments do require focusing on the portion of the

data where z̃j is the same across all goods. While this kind of “thin support” assumptions can lead to

slow rates of convergence and thus be data-demanding, we are reassured by the fact that our approach

succeeds in our empirical application of Section 7 with less than 3,000 observations. As one would

expect, recovering a random coefficients distribution requires considerably more variation and data,

since it involves estimating higher order derivatives of choice probabilities. We further discuss these

challenges in Section 5.

Appendix C: Testing for full information with heterogeneous prefer-

ences

In Lemma 4, we considered the problem of testing the null hypothesis of full information and showed

that, in the case where the coefficients α and β are homogeneous across consumers, one can test the

null by checking whethe the ratios of first derivatives are attenuated relative to the ratios of second

derivatives in (9). Here, we provide conditions under which the same testing approach is valid in the

case where one of the two coefficients is allowed to be heterogeneous.37 We focus on the case where β

is heterogeneous and positive, i.e. all consumers agree that z is a good attribute; the arguments for

the case where β is negative and the case with α is heterogeneous are analogous.38 We also assume

that the ϵij shocks are type-I extreme-value distributed and let sj(β̃) be the choice probability of good

37The reason why we let only one of the coefficients be heterogeneous is that we leverage a result from the statistics
literature that applies to ratios of one-dimensional integrals.

38For notational simplicity, we also focus on the case where z is a scalar. The case where z is a vector follows
immediately provided that one can identify good 1 appropriately.
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j for consumers with β = β̃ under full information, i.e. sj(x, z; β̃) ≡ exp(αxj+β̃zj)∑J
k=1 exp(αxk+β̃zk)

.

We consider the case where the testing approach compares the ratio of second derivatives taken

with respect to goods 1 and 2 to the ratio of first derivatives taken with respect to good 1. Analogous

sufficient conditions could be obtained for different choices of goods. Then, we want to show that∫
s1(x, z;β)(1− s1(x, z;β))βdFβ

α
∫
s1(x, z;β)(1− s1(x, z;β))dFβ

≥
−
∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))β

2dFβ

−α
∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))βdFβ

(34)

where Fβ denotes the distribution of β. We take a pair (x, z) such that ∂s1(x,z)
∂x1

> 0 and ∂2s1(x,z)
∂z1∂x2

> 0

(both of which can be verified from the data), so that (34) holds if and only if

− α

∫
s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))βdFβ ·

∫
s1(x, z;β)(1− s1(x, z;β))βdFβ ≥

−
∫

s1(x, z;β)s2(x, z;β)(1− 2s1(x, z;β))β
2dFβ · α

∫
s1(x, z;β)(1− s1(x, z;β))dFβ

Then, by Theorem 2 of Wijsman (1985), the desired inequality holds if (i) β > 0, and (ii) α
β and

−s1(x,z;β)s2(x,z;β)(1−2s1(x,z;β))β
s1(x,z;β)(1−s1(x,z;β))

= − s2(x,z;β)(1−2s1(x,z;β))β
1−s1(x,z;β)

are monotonic functions of β in the same direc-

tion. Since we assumed throughout that α > 0, we want to show that − s2(x,z;β)(1−2s1(x,z;β))β
1−s1(x,z;β)

decreases

in β monotonically. After some algebra, we have that

∂
[
− s2(x,z;β)(1−2s1(x,z;β))β

1−s1(x,z;β)

]
∂β

< 0 ∀β

if and only if, for all β,

(1− 2s1 (x, z;β))(1− s1 (x, z;β)) >

β

[
s1(x, z;β)

(
z1 −

J∑
k=1

sk(x, z;β)zk

)
− (1− s1(x, z;β))(1− 2s1(x, z;β))

(
z2 −

J∑
k=1

sk(x, z;β)zk

)]
(35)

Under these conditions, at the chosen values of x, z, one can define a test that rejects the null of full

information when the ratio of first derivatives is sufficiently attenuated relative to the ratio of first

derivatives. Note that the condition in (35) can be verified given the support of the distribution of β.

For example, if β takes values on a finite grid of points, then one needs to check whether (35) holds for

all values in the grid. We emphasize that (35) and β > 0 are sufficient, but in general not necessary

conditions, implying that the testing approach could be valid even if the restrictions are not satisfied.

We conclude with an example where the assumption β > 0 is violated in a way that invalidates our

testing strategy.39 Later, we will show that an alternative approach allows us to distinguish between full

information with heterogeneous β and search over z with homogeneous β in this example. Suppose that

there are two goods, consumers have full information, and β is equal to β for a fraction γ of consumers

39This was suggested by an anonymous referee.
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and equal to zero for the remaining fraction (1− γ). Let sj(β) and sj(0) be the choice probability of

good j for each type of consumer, respectively, so that the overall choice probability is sj = γsj(β)+(1−
γ)sj(0) (where we omit the dependence of the choice probabilities on the product attributes). Then,

it can be shown that
∂s1
∂z1
∂s1
∂x1

≤ β
α =

∂2s1
∂z1∂z2
∂2s1
∂z1x2

. In other words, due to this specific form of heterogeneity in β,

the ratio of first derivatives is attenuated relative to that of second derivatives even if consumers have

full information, which invalidates our testing strategy. Next, we show that an alternative approach is

applicable in this case. First, note that under this null hypothesis,
∂2s1

∂z1∂z2
∂2s1

∂z1∂x2

=
∂2s2

∂z2∂z1
∂2s2

∂z2∂x1

= β
α . On the other

hand, under the alternative hypothesis that consumers search over z and have homogeneous β, these two

ratios will in general be different. Specifically, (i) our main result applies to the first ratio:
∂2s1

∂z1∂z2
∂2s1

∂z1∂x2

= β
α ,

and (ii) for the second ratio, we have s2 = P (U2 > U1) + P (U1 > U2, EU2 > EU1, g(x1, ϵ1, U2) ≤ 0) ≡

P1(ũ1, ũ2) + P2(ũ1, ũ2, ẽu1, ẽu2, x1), so that
∂2s2

∂z2∂z1
∂2s2

∂z2∂x1

=
β2 ∂2(P1+P2)

∂ũ2∂ũ1

αβ
(

∂2(P1+P2)
∂ũ2∂ũ1

+
∂2P2

∂ũ2∂ẽu1

)
+β

∂2P2
∂ũ2∂x1

. Because ∂2P2
∂ũ2∂ẽu1

and β ∂2P2
∂ũ2∂x1

are generally nonzero, the expression above is in general not equal to β
α . This example

illustrates that it is possible to distinguish empirically between the hypothesis that consumers are fully

informed with some of them having a zero coefficient on z and the competing hypothesis that they

search over z and have homogeneous preferences over that attribute.

Appendix D: Simulations Results

To test the performance of our approach, we consider several simulations. In all simulations, we

generate N = 20, 000 choices with utility given by:

Uij = αxij + βzij + ϵij (36)

with α = β = 1, xij ∼i.i.d N(0, 1), and ϵij i.i.d. Type 1 extreme value. We separately consider the

case where zij is continuous (zij ∼i.i.d. N(0, 1)) and the case where it is discrete (distributed uniformly

over a grid of ten equally spaced points from 0.1 to 0.9). Further, we set γ1 = 0, i.e. we let consumers

correctly infer that xj is not informative about zj .

We simulate data from four data generating processes, three of which satisfy the assumptions of

our lemma and one of which does not. These are:

1. Weitzman search, with search costs c ∼ LogNormal(−2, 2.25);

2. Satisficing, i.e. searching in order of expected utility until utility-in-hand is at least T ∼
LogNormal(−0.35, 2.25);

3. Search all goods with expected utility above a threshold given by c ∼ N(−1, 16) (if no goods are

above the threshold, search and choose the good with the highest expected utility);
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4. Randomly search K ∈ {1, . . . , J} goods, where the searched goods are the K highest in terms of

expected utility.

DGPs 1-3 satisfy our assumptions. By contrast, DGP 4 violates Assumption 2(ii) because the decision

of whether to search a good does not just depend on that good’s expected utility, but on the expected

utilities of all goods.

Bernstein Polynomial Simulation Results Table 7 reports results from the Bernstein approxi-

mation of the second-derivative ratio which identifies β/α. For comparison, we also report estimates

of
∂sj/∂zj
∂sj/∂xj

, which would recover β/α with full information. In all cases, the estimates based on first-

derivatives are attenuated relative to the true values. This occurs for the reason discussed in Section 2:

consumer insensitivity to variation in z for goods that are not searched biases the coefficients towards

zero. In contrast, the confidence intervals from Bernstein estimation of the second-derivative ratio

include the true values in DGPs 1-3, and are fairly precise for the three-good case. For DGP 4, where

the assumptions of our model do not hold (see Appendix A.7), the coefficient is attenuated in the

three-good case, although the point estimates remain much closer to the true values relative to the

first-derivative estimates.

Table 7: Bernstein Approximation

Two goods Three goods

Continuous z Discrete z Continuous z

DGP First Deriv Second Deriv First Deriv Second Deriv First Deriv Second Deriv

1 0.61 0.98 0.34 0.77 0.40 1.00

(0.02) (0.30) (0.10) (0.31) (0.01) (0.08)

2 0.69 1.28 0.55 1.04 0.36 0.94

(0.02) (0.54) (0.11) (0.27) (0.01) (0.07)

3 0.53 0.87 0.84 1.15 0.33 0.87

(0.02) (0.19) (0.12) (0.25) (0.01) (0.07)

4 0.44 0.80 0.58 1.04 0.21 0.63

(0.02) (0.30) (0.08) (0.22) (0.01) (0.08)

Note: Across all rows, the sample size is N = 20, 000 and the data in each row is generated
by the corresponding DGP described in the main text. In all cases, the true value is 1.
Standard deviations across 250 simulations are reported in parentheses. “First Deriv” refers
to the standard approach based on first derivatives and “Second Deriv” refers to our approach
based on second derivatives.

Flexible Logit Simulation Results For each of the DGPs described above, we consider simulations

with J ∈ {2, 3, 5, 10}. We report estimates from the flexible logit model as well as the standard logit

model. We bootstrap the standard errors using 250 repetitions.
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Results from these simulations are reported in Table 8. The table shows estimates of β/α from a

conditional logit model with no adjustment for imperfect information, as well as the second-derivative

ratio estimates from the flexible logit model. In the standard logit model, the coefficient is attenuated,

typically biased towards zero by 30-50%. The flexible logit model performs substantially better, with

95% confidence intervals including the true estimates in DGPs 1-3. Perhaps surprisingly, the flexible

logit model also performs well for DGP 4; the confidence intervals include the true values for 2, 3 and

10 goods (and almost for 5 goods), and have less bias than the standard logit model regardless of the

number of goods.

Table 8: Estimator Based on Second-derivatives Ratio (Flexible Logit) vs Standard Logit

Number of Goods

2 3 5 10

DGP Standard Flexible Standard Flexible Standard Flexible Standard Flexible

1 0.6590 1.0162 0.6330 1.0809 0.6050 1.0872 0.5770 1.0249

(0.0158) (0.1314) (0.0122) (0.1239) (0.0095) (0.1508) (0.0089) (0.1481)

2 0.7403 1.0251 0.6194 1.0277 0.4587 1.0508 0.2909 1.1817

(0.0162) (0.1151) (0.0135) (0.1139) (0.0102) (0.1571) (0.0083) (0.4269)

3 0.5424 1.0522 0.5945 1.0397 0.6543 0.9579 0.7246 0.8987

(0.0149) (0.1725) (0.0117) (0.1408) (0.0099) (0.1250) (0.0106) (0.1038)

4 0.4543 1.0720 0.5568 0.9644 0.6691 0.8609 0.7887 0.8449

(0.0140) (0.1850) (0.0118) (0.1631) (0.0105) (0.1179) (0.0104) (0.0945)

Note: Across all rows, the sample size is N = 20, 000 and the data in each row is generated by
the corresponding DGP described in the main text. “Standard” refers to estimates of β/α from
a conventional logit model, and “Flexible” refers to estimates from the flexible logit model.
In all cases, the true value is 1. Standard deviations across 250 simulations are reported in
parentheses.

Appendix E: Derivation of Flexible Logit Weights and Choice Prob-

abilities

To motivate our “flexible logit” approach to estimating s1(x, z), note that standard full-information

logit models typically impose strong restrictions on the structure of the derivatives of choice probabil-

ities. Specifically, if uij = vj + ϵij and ϵij is i.i.d. type-I extreme value, where vj is a differentiable
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function of xj and zj , then for qj ∈ {xj , zj}:

∂sj
∂qj

=
∂sj
∂vj

∂vj
∂qj

=
∂vj
∂qj

sj(1− sj)

∂sj
∂qj′

=
∂sj
∂vj′

∂vj′

∂qj′
= −

∂vj′

∂qj′
sjsj′

∂2sj
∂zj∂qj′

= −
∂vj′

∂qj′

∂vj
∂zj

sjsj′(1− 2sj) (37)

for j′ ̸= j. Thus, in a conventional logit model, ∂2s1
∂z1∂zj′

/ ∂2s1
∂z1∂xj′

= ∂s1
∂zj′

/ ∂s1
∂xj′

=
∂vj′
∂zj′

/
∂vj′
∂xj′

for all j′ ̸= 1,

and this further equals ∂s1
∂z1

/ ∂s1
∂x1

when
∂vj
∂qj

=
∂vj′
∂qj′

for all j, j′. We would like to estimate a model of s1

which is sufficiently flexible that ratios of first-derivatives differ from ratios of second derivatives, as

will generally occur if consumers engage in search. To allow for this additional flexibility, we let the

utility for good 1 depend directly on attributes of rival goods as follows:

v1 = ax1 + b1z1 +
∑
k ̸=1

(ηkwz1kzk + η2kwx1kxk + ρkwz2kzkz1 + ρ2kwx2kxkz1) (38)

where wz1k, wx1k, wz2k and wx2k are known weights, and a, b1, ηk, η2k, ρk and ρ2k are coefficients to

be estimated. Further, we let vk = axk + bzk for k ̸= 1.

In this section, we derive the relevant derivatives of choice probabilities for the flexible logit model

described in the text and motivate our choice of weights. The weights wx1k, wz1k, wx2k and wz2k

are chosen so that, given the logit functional form, ∂2s1
∂z1∂zj

/ ∂2s1
∂z1∂xj

can be constant across goods as

our structural model implies when these weights are regarded as constant in derivatives. With these
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weights, we have the following derivatives :

∂v1
∂z1

= b1 +
∑
k ̸=1

(ρkwz2kzk + ρ2kwx2kxk)

∂s1
∂x1

=
∂s1
∂v1

∂v1
∂x1

= as1(1− s1)

∂s1
∂z1

=
∂s1
∂v1

∂v1
∂z1

=
∂v1
∂z1

s1(1− s1)

∂s1
∂xj′

=
∂s1
∂vj′

∂vj′

∂xj′
+

∂s1
∂v1

∂v1
∂xj′

= −as1sj′ + [η2j′wx1j′ + ρ2j′wx2j′z1]s1(1− s1)

∂s1
∂zj′

=
∂s1
∂vj′

∂vj′

∂zj′
+

∂s1
∂v1

∂v1
∂zj′

= −bs1sj′ + [ηj′wz1j′ + ρj′wz2j′z1]s1(1− s1)

∂2s1
∂z1∂xj′

=
∂2s1

∂v1∂xj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂xj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂xj′

+ s1(1− s1)ρ2j′wx2j′

∂2s1
∂z1∂zj′

=
∂2s1

∂v1∂zj′

∂v1
∂z1

+
∂s1
∂v1

∂2v1
∂z1∂zj′

=
∂v1
∂z1

(1− 2s1)
∂s1
∂zj′

+ s1(1− s1)ρj′wz2j′

(39)

And also:

∂2s1

∂z1∂zj′
/

∂2s1

∂z1∂xj′
=

∂v1
∂z1

(1− 2s1)
∂s1
∂zj′

+ s1(1− s1)ρj′wz2j′

∂v1
∂z1

(1− 2s1)
∂s1
∂xj′

+ s1(1− s1)ρ2j′wx2j′

=

∂v1
∂z1

(1− 2s1)
(
−bs1sj′ + [ηj′wz1j′ + ρj′wz2j′z1]s1(1− s1)

)
+ s1(1− s1)ρj′wz2j′

∂v1
∂z1

(1− 2s1)
(
−as1sj′ + [η2j′wx1j′ + ρ2j′wx2j′z1]s1(1− s1)

)
+ s1(1− s1)ρ2j′wx2j′

(40)

If we define the weights: wx1j′ = wz1j′ =
sj′

1−s1
and wx2j′ = wz2j′ = [ z1(1−s1)

sj′
+ (1−s1)

(∂v1/∂z1)(1−2s1)sj′
]−1 =

(1−2s1)sj′
1−s1

(
1

∂v1/∂z1
+ (1− 2s1)z1

)−1
=

(∂v1/∂z1)(1−2s1)sj′
1−s1

(1 + (1− 2s1)z1(∂v1/∂z1))
−1, then:

∂2s1
∂z1∂zj′

/
∂2s1

∂z1∂xj′
=

∂v1
∂z1

(1− 2s1)s1sj′
(
−b+ ηj′wz1j′

(1−s1)
sj′

+ ρj′wz2j′ [
z1(1−s1)

sj′
+ (1−s1)

(∂v1/∂z1)(1−2s1)sj′
]
)

∂v1
∂z1

(1− 2s1)s1sj′
(
−a+ ηj′wx1j′

(1−s1)
sj′

+ ρj′wx2j′ [
z1(1−s1)

sj′
+ (1−s1)

(∂v1/∂z1)(1−2s1)sj′
]
)

=
∂v1
∂z1

(1− 2s1)s1sj′
(
−b+ ηj′ + ρj′

)
∂v1
∂z1

(1− 2s1)s1sj′
(
−a+ η2j′ + ρ2j′

)
=

−b+ ηj′ + ρj′

−a+ η2j′ + ρ2j′
(41)
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Thus, we have:

∂2s1
∂z1∂zj′

/ ∂2s1
∂z1∂xj′

=
−b+ ηj′ + ρj′

−a+ η2j′ + ρ2j′
(42)

where wz1j′ = wx1j′ =
sj′

1−s1
and wx2j′ = wz2j′ = (∂v1/∂z1)

(1−2s1)sj′
1−s1

(1 + (∂v1/∂z1)(1− 2s1)z1)
−1.

This implies that the above ratio is a constant for each j′.

Estimation of the model with these weights is infeasible since the levels of the choice probabilities s1

and sk, as well as the derivatives ∂v1/∂z1 are unknown ex ante and thus we do not know the weights. We

estimate the model via a two-step process where s1 and sk are estimated using a standard logit model

(where utility for each good is a linear function of xj and zj), these estimates are used to construct

weights, and then the model in equation (38) is estimated treating these weights as constants.40

To recover estimates of β/α from the flexible logit model, we use the ratio in equation (42). In

cases where the identity of goods is not meaningful (e.g. “good 2” does not refer to the same good

across different choice sets and there are no alternative-specific fixed effects), we can further impose

ηk = η, η2k = η2, ρk = ρ and ρ2k = η2, which gives a single estimate of β
α .

Appendix F: Recovery of Search Costs Given Preferences in theWeitz-

man Model

Suppose that consumers search sequentially according to the model of Weitzman (1979). For simplicity,

here we consider the case where γ1 = 0.

As shown in Armstrong (2017),41 the optimal search strategy is for consumers to behave as if they

were choosing among options in a static model with utilities given by Ũij = xjα + min {zj , rvi}β +

ϵij , where rvi denotes i’s reservation value in units of z (see Example 1). Thus, dropping i subscripts,

ordering goods so that z1 ≥ z2 ≥ . . . ≥ zJ , and letting

Et ≡ {ϵ : ϵk − ϵ1 ≤ (x1 − xk)α, k = 2, ..., J − t− 1}∩{ϵ : ϵh − ϵ1 ≤ (x1 − xh)α+ (rv − zh)β, h = J − t, ..., J}

40Since ∂v1/∂z1 is estimated imprecisely from the standard logit, when 1+ (∂v1/∂z1)(1− 2s1)z1 is close to 0 (leading
to very large weights), we set ∂v1/∂z1 = 0 when the former term falls below 1 in absolute value.

41See also Choi, Dai, and Kim (2018).
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we can write

s1 = P (x1α+min {z1, rv}β + ϵ1 ≥ xkα+min {zk, rv}β + ϵk ∀k)

= P (ϵk − ϵ1 ≤ (x1 − xk)α ∀k) · P (rv ≤ zJ)

+
J−2∑
t=0

∫
P ({ϵ ∈ Et} ∩ {zJ−t ≤ rv ≤ zJ−t−1}) dFrv (rv)

+ P (ϵk − ϵ1 ≤ (x1 − xk)α+ (z1 − zk)β ∀k) · P (rv ≥ z1)

where Frv denotes the cdf of rv and the second equality assumes that search costs (and thus rv) are

independent of ϵ. Therefore, we have

∂s1
∂z1

=

[
∂

∂z1
P (ϵk − ϵ1 ≤ (x1 − xk)α+ (z1 − zk)β ∀k)

]
P (rv ≥ z1) (43)

Given identification of (α, β) by the argument in Section 2, the first term on the RHS of (43) is

identified if we assume a distribution for ϵ.42 Thus, P {rv ≥ z1} is identified. Repeating the argument

for all z1, one can trace out the entire distribution of rv. Since c, the search cost for consumer i, is a

known transformation of rv,43 the distribution of c is also identified.

Equation (43) also lends itself to a different argument that does not require assuming a distribution

for ϵ, but instead relies on “at-infinity” variation. Note that the first term on the RHS of (43) is

invariant to increasing all zj ’s by the same amount. Thus, we can write

∂s1
∂z1

(z+∆)
∂s1
∂z1

(z)
=

P (rv ≥ z1 +∆)

P (rv ≥ z1)
(44)

where ∆ is a J−vector with all elements equal to some ∆. Letting ∆ → −∞, the numerator on the

RHS of (44) goes to 1, which yields identification of P (rv ≥ z1). Repeating the argument for all z1,

one can trace out the entire distribution of rv and recover the distribution of c as above.

There are a few reasons researchers might be interested in recovering search costs given the methods

developed here. A full normative evaluation of an information intervention might directly include

search costs: information may benefit consumers both by helping them make better choices and by

helping them make choices more easily, and search costs quantify the latter effect. Note that structural

search costs may be the wrong object to use for normative evaluation even if a structural search model

performs well as a positive model of choices. For example, if consumers spend one hour choosing

42In Section 2, we could normalize α = 1 since we were treating the distribution of ϵ nonparametrically. Here, we
assume a distribution for ϵ (e.g., Gumbel) and thus we are not free to normalize α. However, note that an argument
analogous to that of Section 2 immediately yields identification of α. Specifically, when zj = zk for all j, k, consumers
never make a mistake and thus variation in x identifies α using standard full information methods.

43This assumes that the prior Fz used by consumers in forming expectations are known to the researcher, as in the
case where consumers have rational expectations and Fz coincides with the observed distribution of z across goods and/or
markets.
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insurance plans and we estimate that they act as if they have search costs of $1,000 per plan, this

does not imply that they are made $1,000 better off by eliminating the need to search. In other words,

search behavior may be well-described by a model with large search costs even if consumers’ willingness

to pay to avoid search is substantially less than the costs implied by any given model. Back of the

envelope estimates of search costs based on survey data or other information on the time consumers

spend choosing may be more credible and less prone to misspecification than structural estimates (e.g.

Kling, Mullainathan, Shafir, Vermeulen, and Wrobel (2008)).

Search costs may also be of interest for counterfactuals where the choice environment is altered

in ways that change search behavior without eliminating search entirely. As we emphasize above,

eliminating search entirely is a reasonable counterfactual in our setting where search uncovers objective

information that is available to the econometrician. However, other counterfactuals may be of interest,

such as changing the order in which items are presented to consumers in search (Compiani, Lewis,

Peng, and Wang 2024). This typically requires placing more structure on the search process.

Appendix G: Welfare Benefits of Information

We first consider the case with an arbitrary distribution of unobservables: Uij = αxj +βzj + ϵij (later,

we specialize things to the logit case). Here, we assume that the choices in the status quo where

consumers may not be fully informed can be represented by a positive utility function of the form

Uij,pos = αposxj + βposzj + ϵij , i.e. that consumer i chooses option j in the status quo if and only if

Uij,pos ≥ Uik,pos for all k ̸= j. The assumption that Uij,pos is separable in ϵij is not without loss and can

be microfounded given a model of search. For example, in the Weitzman-type model of Example 1,

one can use the argument in Armstrong (2017) to show that choices are represented by a set of indices

that are separable in ϵij (under our maintained assumption that ϵij is only revealed via search). Then,

the consumer surplus in the status quo is:

E(CS0) =
∑
j

∫
M̃j

(αxj + βzj + ϵij)dF (ϵi) (45)

where F denotes the distribution of ϵi and M̃j = {ϵi : Uij,pos ≥ Uik,pos ∀k ̸= j}. Note that E(CS0)

is identified under our assumptions. Specifically, Lemma 2 shows that β as well as the distribution of

ϵi are identified (with the normalization α = 1). Further, given the distribution of ϵi, αpos and βpos

are identified from the data (which by definition is generated under the status quo) under standard

arguments for full information models (Matzkin 1993).

Next, the consumer surplus when consumers are fully informed is given by:

E(CS1) =
∑
j

∫
Mj

(αxj + βzj + ϵij)dF (ϵi) (46)
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where Mj = {ϵi : Uij ≥ Uik ∀k ̸= j}. This quantity is immediately identified given identification of

normative preferences in Lemma 2 without any additional assumptions. Combining the arguments

above identifies the welfare benefits of full information, E(CS1)− E(CS0).

In practice, we make extra parametric assumptions in applications. To deal with the curse of

dimensionality, we assume that the ϵ shocks are i.i.d. Gumbel. In order to approximate status quo

choice probabilities, we estimate a standard logit model on the data where consumers are (possibly)

uninformed (the flexible logit estimates could be used here as well to provide additional flexibility).

Similarly, we approximate informed choices using this same logit model with the flexible logit estimate

of β replacing the standard logit estimate. Finally, we use this logit model (with the flexible logit

estimate of β) to evaluate normative choices, consistent with our assumption that consumers fully

learn their utilities through search.

To spell things out in more detail, denote by βpos the standard logit estimate of β and by βnorm

the flexible logit estimate, and let sj(βpos) be product j’s choice probability when consumers attach a

weight of βpos to the z attribute. Then, as shown in Appendix D of Abaluck and Gruber (2009), we

can compute the dollar-equivalent consumer surplus of potentially uninformed consumers as:

E(CS0) = − 1

αp

[∑
k

(βnormzk − βposzk)sk(βpos) + ln
∑
k

exp(αxk + βposzk)

]

where αp is the (normative) marginal utility of income, estimated as the coefficient on price (consistent

with the settings in our applications, we assume price is visible to consumers at no cost, i.e. that it is

one of the x attributes). On the other hand, consumer surplus under full information is given by the

conventional log-sum formula:

E(CS1) = − 1

αp
ln
∑
k

exp(αxk + βnormzk),

The change in consumer surplus from providing consumers with information is thus:

∆CS = − 1

αp

[
ln
∑
k

exp(αxk + βnormzk)− ln
∑
k

exp(αxk + βposzk)−
∑
k

(βnormzk − βposzk)sk(βpos)

]
.

This is the quantity we report in both of our applications.
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Appendix H: Details of Estimation in the Laboratory Experiment

Our pre-registered approach is as follows: we approximate the function s1 by taking the tensor product

of univariate Bernstein polynomials, one for each argument of the function.44 Further, we impose the

natural constraint that s1 be decreasing in the price of book 1 and the discounts of books 2 and 3,

and increasing in the discount of book 1 and the prices of books 2 and 3. The main result of this

procedure is an estimate of β/α1, which we obtain by dividing a trimmed mean (across choices) of

∂2s1
∂discount1∂discountj

by a trimmed mean of ∂2s1
∂discount1∂pricej

for all j ̸= 1, and then averaging across j.45

Note that, unlike in Lemma 2, here we will assume a distribution for ϵ (to be used in our counterfactual

analysis below) and thus we are not free to impose a scale normalization on α1. Instead, we estimate

α by selecting choice sets where the across-product variance of discounts is in the bottom quartile46 of

the distribution across choice sets and estimating a standard logit model (where we drop the discount

from the list of explanatory variables). Further, because prices and discounts are randomized — and

participants are explicitly told so — we assume that no inference on discounts is made based on prices,

i.e. we set γ1 = 0.

Appendix I: Testing the Expected Utility Assumption in the Labo-

ratory Experiment

As discussed in Section 4.3, while the expected utility assumption cannot be verified directly, it can

be tested along with the other restrictions of our model. One such test is to compute bounds on the

choice probabilities implied by the model. Given our estimates of preferences and assumptions about

the distribution of ϵij , we can compute the upper and lower bounds described in Section 4.3 for each

individual via simulation. We sort the data by the lower bound, bin the data into 100 quantiles, and

graph in each quantile the mean of the upper and lower bounds, as well as the choice probabilities

estimated via Bernstein polynomials.

Figure 4 shows the results of this exercise. We can see that the bounds in the experimental data have

some bite: the range between the lower bound and the upper bound ranges from 13 to 20 percentage

points. The estimated choice probabilities in nearly all cases lie within this range. These probabilities

thus appear broadly consistent with the expected utility assumption.

44We use univariate polynomials of degree three for the arguments z1, x2, z2 and of degree two for the remaining
arguments. The total degree of the approximation is 15. We chose these values for the polynomial degrees since we found
that they worked well in simulations with a similar number of goods and across a range of search protocols. One could
use recent results by Chen, Christensen, and Kankanala (2024) for a more formal approach.

45Specifically, for each second derivative, we take the mean over values in the interquartile range. As is often the case
in nonparametric estimation, trimming helps obtain less noisy estimates. Again, the amount of trimming was chosen
based on simulation results.

46Table 13 shows that the results are robust to the choice of this threshold.

S12



Figure 4: Choice Probabilities, Upper and Lower Bounds from Expected Utility Assumption

Appendix J: Field Validation Details

J.1 Data Cleaning

The dataset from Kaggle.com contains 9,917,530 observations at the hotel-consumer level. We filtered

out the following categories of observations. First, the data set contains some errors in the price

information. We removed search impressions that contain at least one observation for which the listed

hotel price is below $10 or above $1000 per night, or the implied tax paid per night either exceeds

30% of the listed hotel price, or is less than $1. Second, we removed the search impressions where the

consumer observed a hotel in position 5, 11, 17 or 23. These positions usually correspond to “opaque

offers” (Ursu (2018) provides a detailed description of this feature in the data). Third, the original data

set contains observations on more than 20,000 destinations, with a median of two search impressions

per destination. We focused our attention on destinations with at least 50 search impressions. Fourth,

we kept the search impressions where transactions happened within the top 10 positions excluding the

opaque offer positions, and we only kept these top 10 hotels in these choice sets. The final dataset

then contains 54,648 choice sets and 546,480 observations. Table 9 provides a detailed description of

each variable.

J.2 Confidence Interval Construction

We follow these steps:

1. For every bootstrap sample (indexed by n = 1, . . . , 250) and every choice of the x variable
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Table 9: Variable Description

Variable Description

Price Gross price in USD

Stars Number of hotel stars

Review Score User review score, mean over sample period

Chain Dummy for whether hotel is part of a chain

Location Score Expedia’s score for desirability of hotel’s location

Promotion Dummy for whether hotel is on promotion

(indexed by k), compute an estimate β̂k,n =
ˆ(β
α

)
k,n

α̂k,n using steps 1-5 in Table 1. The possible

choices of x depend on the model. For example, in Model I where the candidate z is the location

score, the possible x variables are price, stars and review score.47 Repeat the same procedure

using the original sample to obtain point estimates βk.

2. Compute the variance of β̂k,n across bootstrap samples, denoted by var(β̂k).

3. For each n, calculate the weighted average β̂n =
∑

k wk·β̂k,n, where the weights, wk = 1/var(β̂k)∑
k(1/var(β̂k))

,

are proportional to the inverse of variance so that we put less weight on less informative estimates

(step 5 in Table 1). Repeat the same procedure using the original sample to obtain the point

estimate β̂.

4. Compute the bias-corrected confidence interval (Davison and Hinkley 1997) as follows. Let z0 =

Φ−1{#(β̂n ≤ β̂)/250}, where #(β̂n ≤ β̂) is the number of elements of the bootstrap distribution

that are less than or equal to the estimate from the original dataset and Φ is the standard normal

cdf. Let p1 = Φ
(
2z0 − z1−α/2

)
, p2 = Φ

(
2z0 + z1−α/2

)
, where z1−α/2 is the (1−α/2)−th quantile

of the standard normal distribution. Compute the bias-corrected (1 − α)% confidence interval

[β∗
p1 , β

∗
p2 ], where β∗

p is the pth quantile of the bootstrap distribution (β̂1, ..., β̂250) from step 3.

J.3 Estimation Results

Tables 10 and 11 show detailed results from the flexible logit and standard logit estimations. To facili-

tate comparisons, we report the coefficients multiplied by the standard deviation of the corresponding

variable.

47We estimate αk,n via a logit model using only the choice sets where the variance of the z across products is in the
bottom decile. The results are robust to this threshold (see Table 13).
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Table 10: Estimation Results: Normalized β Estimates

z Variable Standard Estimate Standard CI Flexible Estimate Flexible CI

Location Score 0.298 (0.278, 0.317) 0.770 (0.548, 1.107)

Price -1.085 (-1.109, -1.061) -1.192 (-1.352, -1.044)

Review Score 0.172 (0.159, 0.185) 0.450 (0.083, 0.641)

Stars 0.386 (0.369, 0.403) 0.256 (0.088, 0.380)

Note: We report point estimates and 95% confidence intervals for the β coefficients for different choices of the z variable.
The first two columns report results from the standard logit model and the second two report results from the flexible
logit approach.

Table 11: Estimation Results: Difference in Magnitude of β Estimates

z Variable Point Estimate Confidence Interval

Location Score 0.472 (0.258, 0.783)

Price 0.107 (-0.032, 0.256)

Review Score 0.278 (-0.092, 0.486)

Stars -0.131 (-0.271, 0.007)

Note: For different choices of the z variable, we report point estimates and 95% confidence intervals for the difference
between the absolute value of the β coefficient estimate from the flexible logit approach and the absolute value of the
estimate from the standard logit model.

J.4 Robustness Checks for Expedia Results

J.4.1 Alternative Model Specifications

To check the robustness of our results, we conduct a series of additional analyses for the case where

location is the candidate z variable and the other attributes all serve as x variables. First, we estimate

several extensions of our baseline model: (i) we allow consumers to form expectations about location

based on the other attributes (i.e., γ1 ̸= 0); (ii) we let the position of the hotel on the results page

affect the order of search as in Section 3.2; (iii) we consider the case where the idiosyncratic term ϵij

is only revealed to consumers after search (Section 3.3). As shown in Figure 5, we consistently find

that the estimated preference for location in the standard logit model is attenuated compared with the

flexible logit estimate. The only (slight) exception is for the case where ϵ is revealed via search, where

we cannot reject the hypothesis that the two estimates are the same. We should note, however, that

this version of the model is rejected by the data (we test the model by comparing ratios of first and

ratios of second derivatives that the model implies should be equal, as detailed in Appendix A.6).

J.4.2 Bound Test on Expected Utility Assumption

Figure 6 shows the results of the bound test using the Expedia data with location score as the z

variable. We can see that the bounds have some bite and the estimated choice probabilities almost

always lie within the lower and upper bounds. These probabilities are thus broadly consistent with
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Figure 5: Robustness of Results with Alternative Model Specifications

Note: This figure reports 95% confidence intervals for the difference between the absolute value of the normalized β
estimate from flexible logit and the absolute value of the corresponding standard logit estimate across different models.
For the “ϵ revealed by search” model, we report β/αprice.

the expected utility assumption.

J.4.3 Heterogeneous Preference

In Table 12 and Figure 7, we present summary statistics and histograms of the number of clicks

conditional on searching good 1,2,...,10. They are not very different, suggesting that the preferences

of consumers who searched good 1 are unlikely to be very different from those of the rest of the

population. Furthermore, we utilize the demographic data on consumer country in the Expedia data,

and split the full sample into two subsamples: Country 219 (32,859 choice sets, 60% of the data) and

other countries. We estimate flexible logit separately in the two subsamples, and find attenuation in

location preference consistent and stable. The difference test results are presented in the fourth and

fifth specification in Figure 5.

J.4.4 Limited z Variation Method

In our identification argument, we recover the coefficients α on the attributes visible pre-search by

conditioning on choice sets where all products have the same value of the z attribute. In practice,
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Figure 6: Choice Probabilities, Upper and Lower Bounds from Expected Utility Assumption

Figure 7: Total Number of Clicks Conditional on Searching Different Goods

(A) Good 1 (B) Good 2 (C) Good 3 (D) Good 4 (E) Good 5

(F) Good 6 (G) Good 7 (H) Good 8 (I) Good 9 (J) Good 10

Note: We report histograms of the total number of clicks conditional on consumer searching good 1,2,..., 10, where the
goods are sorted in decreasing order of the hidden attribute z. There are no meaningful differences across the distribution
of clicks, suggesting that consumers who searched the hotels with the best location did not exhibit substantially different
search behavior than the rest of the users.

this entails taking a subsample in which z exhibits variation across products that is below a given

threshold. It is then natural to ask how sensitive the results are to the choice of this threshold. To

address this, we repeat our estimation using different thresholds for the z variation. Table 13 reports

the results for both the lab experiment and the Expedia application. As expected, the estimate is
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Table 12: Number of Clicks Conditional on Searching Different Products

Searched Good Mean Number of Clicks Standard Deviation Number of Consumers

1 1.194 0.705 6,428

2 1.190 0.694 6,399

3 1.205 0.728 6,231

4 1.209 0.748 6,136

5 1.209 0.732 6,057

6 1.211 0.740 5,888

7 1.207 0.730 5,531

8 1.199 0.720 5,527

9 1.209 0.744 5,320

10 1.204 0.745 5,021

Note: We report key moments of the distribution of a user’s total number of clicks conditional on the consumer searching
good 1,2,..., 10, where the goods are sorted in decreasing order of hidden attribute z.

noisier if we use less of the data, but we find that our flexible estimates are reasonably stable and have

consistently bigger magnitudes than the standard logit estimates.

J.4.5 β Estimates from Different Choices of x

Given that multiple variables can play the role of x in the Expedia data, we are free to choose any of

them when taking derivatives to obtain our key ratio of second derivatives. If the model is correctly

specified, the resulting estimates of the coefficient β on the location score should be statistically

indistinguishable. Table 14 shows that this indeed is the case. Specifically, all confidence intervals

overlap with the most accurate estimate obtained when price is chosen as the x variable.
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Table 13: Robustness check on how much variation in z we use to recover α

Point Estimate Confidence Interval

Lab Experiment

Standard Approach -0.121 (-0.137, -0.105)

Flexible Approach

Tercile -0.275 (-0.383, -0.196)

Quartile -0.272 (-0.367, -0.189)

Decile -0.314 (-0.449, -0.167)

Ventile -0.279 (-0.446, -0.110)

Percentile -0.286 (-0.694, 0.066)

Expedia

Standard Approach 0.298 (0.278, 0.317)

Flexible Approach

Tercile 0.674 (0.495, 0.958)

Quartile 0.693 (0.513, 0.996)

Decile 0.770 (0.549, 1.108)

Ventile 0.869 (0.632, 1.276)

Percentile 0.800 (0.552, 1.169)

Note: We report point estimates and 95% confidence intervals for the β coefficients from different choices of how much
variation in the z attribute we allow across goods when recovering the coefficient α. For instance, “Tercile” means that
we only take the choice sets in which the standard deviation of z across products is in the bottom tercile. We find that
the estimates from flexible logit are consistently stable, and significantly larger than the standard logit estimates.

Table 14:
(
αk ·

(
β
αk

))
estimates for different x variables

k Point Estimate Confidence Interval

Price 0.770 (0.549, 1.108)

Star 1.106 (-3.033, 14.975)

Review 0.647 (0.333, 7.118)

Note: We report point estimates and 95% confidence intervals for the β coefficients from different choices of the x variable
when location score is treated as z. All confidence intervals overlap with price giving the most accurate estimate.
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