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Abstract. We study the problem faced by an online retail platform choosing product rank
ings in order to maximize two distinct goals: consumer surplus and revenues/profits. To 
this end, we specify a version of the Weitzman sequential search model in which search 
reveals a consumer’s idiosyncratic taste for the product as well as vertical dimensions of its 
quality, and we derive convenient expressions for consumer surplus and revenues. To 
optimize consumer surplus, platforms should facilitate product discovery by promoting 
“diamonds in the rough,” that is, products with a large gap between the utility they deliver 
and what consumers expect based on the presearch information. By contrast, to maximize 
static revenues, the platform should favor high-margin products, potentially creating a ten
sion between the two objectives. We develop computationally tractable algorithms for esti
mating consumer preferences and optimizing rankings, and we provide approximate 
optimality guarantees in the latter case. When we apply our approach to data from Expe
dia, our suggested consumer surplus–optimizing ranking achieves both higher consumer 
surplus and higher revenues relative to the Expedia ranking—delivering a Pareto 
improvement—and also dominates ranking the products in order of utility, which is intui
tive but fails to leverage information on what consumers know presearch.
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2022.0071. 

Keywords: consumer search • online platforms • product rankings • recommendation systems

1. Introduction
E-commerce is an important part of the economy and 
becoming more so. As a result, platforms such as Ama
zon, Google, and Expedia play an increasingly crucial 
role in shaping consumer choices. One key tool at their 
disposal is product rankings, which have the ability to 
direct consumer attention and, thus, influence purchasing 
choices. A growing literature explores the impact that 
rankings have on choices (e.g., Athey and Ellison 2011, 
Yao and Mela 2011, Ghose et al. 2014, Chen and Yao 2017, 
Ursu 2018, Choi and Mela 2019, Hodgson and Lewis 
2020). Because rankings are often found to be an impor
tant driver of consumer decisions, it is natural to investi
gate what is the best way to rank products on a platform.1

Given this, the goal of our paper is to propose and 
study ranking algorithms that maximize two main objec
tives: platform profits/revenues—obviously of interest 
for a platform—and consumer surplus, which is relevant 
for policy makers as well as for a platform that faces 
competition and is concerned about consumer churn. 
One might speculate that having access to top-tier 
machine learning methods paired with the ability to run 

A/B tests would mean that this is an already solved prob
lem. Whereas conceptually straightforward, this experi
mentation strategy runs into two issues. First, the number 
of possible rankings is very large for typical choice set 
sizes, and it may be impossible or very costly for plat
forms to run such a large number of experiments. Second, 
whereas revenues/profits can be quantified directly from 
the data, welfare is not immediately observed. This moti
vates us to pursue a different approach. We first specify a 
version of the canonical sequential search model of Weitz
man (1979) and take that as the ground truth. Then, we 
use this model to propose algorithms for optimizing con
sumer surplus and platform revenue. Note that, even 
with the model primitives in hand, evaluating the target 
metrics at all possible rankings is intractable given the 
large number of rankings. Instead, we apply this brute 
force approach only to the top positions and then proceed 
greedily for the remaining slots and prove that this strat
egy offers formal approximation guarantees. Finally, we 
show how to estimate our model on data from Expedia 
using the “exploded logit” formula to minimize reliance 
on simulation methods and explore how our algorithms 
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compare with competing rankings in this real-world 
setting.

When specifying our model, we aim to strike a bal
ance between two competing objectives: (i) flexibility— 
because we want the information in the data and not 
the model assumptions to drive the results of our coun
terfactual analyses—and (ii) tractability, which is key 
to being able to estimate the model and then use it for 
optimization. In our model, consumers search sequen
tially to reveal the products’ utilities.2 The optimal 
search rule involves computing, for each good, a search 
index (sometimes referred to as the reservation value), 
which encapsulates the good’s expected utility pre
search as well as the cost of revealing its utility. We 
propose a parameterization of the utility and search 
indices that accommodates multiple configurations of 
which components of utility consumers know presearch 
versus postsearch. In particular, in the model, consumers 
reveal their idiosyncratic match values—as is commonly 
assumed in the literature—but may also uncover vertical 
dimensions of quality.3 This creates a potential wedge 
between the utility of a product for the average con
sumer and how good that product looks presearch (i.e., 
its average search index). As is described subsequently, 
the platform can then increase consumer surplus by 
steering consumers toward products that deliver high 
utility relative to what consumers expect ex ante. This 
informational asymmetry between the platform and the 
users is at the core of our results.

In order to study optimal rankings, we assume that 
platforms are able to increase and decrease the search 
indices of products beyond their baseline levels by either 
promoting them (giving them prominence on the search 
page) or burying them in the search results. By deciding 
what to rank and where to rank it, platforms can thus 
affect consumer choices. Given our data, we focus on the 
case of organic product rankings, although the frame
work could be extended to the case of sponsored search 
provided that data on sellers’ bids is available.

Next, we obtain intuitive expressions for choice 
probabilities—and thus profits—and consumer surplus. 
For choice probabilities, we build on a result by Choi et al. 
(2018) and provide a convenient characterization of pur
chase behavior in our model, showing that the product 
ultimately chosen takes a max-min form: it is the product 
with the highest effective index; the effective index of a 
product is the minimum of its search and utility indices. 
For consumer surplus, we show that a key driver is the 
potential of the products in the choice set, which we 
define as the difference between the mean utility and 
search indices after the search indices have been adjusted 
to account for ranking.

With these expressions in hand, we start by considering 
the problem of choosing rankings to optimize consumer 
surplus. Knowing what is best for consumers is important 
both for platforms with long-run (growth) objectives as 

well as regulators who want to govern these platforms. 
To gain intuition, we consider a relaxation of the problem 
in which the platform can continuously adjust the search 
indices subject to a “rankings budget” constraint. We find 
that the platform should act to equate the potentials of all 
products. Ex ante, a high-potential product is one with a 
high utility relative to its search index: a diamond in the 
rough. The product is unlikely to be viewed and chosen 
by consumers unless the platform promotes it; such pro
motion helps consumers make better choices. Contrast 
this with a product that has both high mean utility and 
search indices, that is, a product that is well-known to be 
high quality, such as a branded item. This product is often 
chosen by consumers, and so the platform need not use 
its limited space promoting it.

An immediate but nontrivial implication of this analy
sis is that ranking products from highest to lowest utility 
is not necessarily optimal for consumer surplus because 
high-utility products need not have high potential.4 An 
example is a product from a top brand that has both 
high salience and utility and needs no promotion to be 
purchased. In this case, it is preferable to rank a rela
tively unknown, equally high-quality product at the top. 
In contrast, existing work that does not explicitly model 
the consumer search process for possibly vertical com
ponents of utility finds that ranking by utility is always 
optimal (Ghose et al. 2012). Another implication of the 
framework is that a product that is highly salient but 
offers low utility (clickbait) should optimally be buried 
in the rankings because that frees up space to promote 
more worthy products. Note that these nuances arise 
because, as mentioned, our model accommodates search 
over vertical components of utility, so that the platform 
has more information than consumers do presearch 
about the average quality of products. The platform can 
thus use this information to steer consumers toward bet
ter options through rankings.

The optimal ranking is different when the platform 
is concerned with profit/revenue maximization.5 In 
a world in which the consumer buys some product 
regardless of the selection, the platform should opti
mally offer the consumer no choice at all and only dis
play a single product, the one on which it earns the 
highest revenue.6 However, realistically, consumers 
can shop elsewhere. This competitive force drives the 
platform toward aligning its rankings with consumer 
preferences so as to make a sale. We show that the 
optimal product assortment includes all products that 
have a (weakly) higher product revenue than the aver
age product revenue; the averaging includes the zero- 
revenue outside option. Further, the revenue-optimizing 
ranking is typically different from the consumer surplus- 
maximizing ranking because the products delivering high 
revenues need not have high potential.7

The continuous relaxation of the problem that we have 
described so far gives useful intuition, but in practice, the 
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assignment of products to ranks is a discrete optimization 
problem, and the heuristics from the continuous case can
not be blindly followed. For example, it may not be opti
mal to place the product with the highest potential at the 
top of the search rankings because, if it has a low enough 
search index, it may attract very few purchasers even 
when top-ranked, which is a waste of that position.8

We thus offer a pair of similar algorithms for maxi
mizing consumer surplus and revenue. They combine 
an exhaustive brute force search of the best ranking for 
the top K positions with a greedy algorithm for ranking 
the remaining products. We show that the amount of 
surplus/profits left on the table by this approach is 
upper bounded by a function that is increasing in the 
combined choice probability of all products ranked 
`below K. Therefore, when this choice probability is 
small—that is, when products ranked below K are 
unlikely to be chosen—our algorithms are close to being 
optimal. Through choosing K, the platform can trade off 
the tightness of the optimality guarantee against 
the computational demands of the ranking algorithm. 
What makes proving these approximation guarantees 
technically challenging is interference effects among 
units—ranking one product higher means that it is more 
likely to be purchased and every other product less so— 
so that the analysis is not neatly separable across pro
ducts. Simulation experiments verify that these solutions 
work well in a range of simulated environments, achiev
ing more than 98% of the available gains in consumer 
surplus and revenue from rankings (available gains are 
defined as the difference between the consumer sur
plus/revenue under the best and the worst rankings).

The second part of the paper takes our approach to 
the wild. We use two data sets from Expedia: in one data 
set (the “training” data), rankings were assigned at ran
dom, whereas in the other (the “testing” data) they were 
assigned according to Expedia’s algorithm (these data 
sets were also used in Ursu (2018)). We fit the model 
only on the training data to avoid concerns related to the 
endogeneity of product ranks and use the testing data to 
validate the model out of sample. Identification is aided 
by the fact that we see both what the consumers clicked 
on and what they bought, which implies a set of order
ings for the search and utility indices. The likelihood of 
each of these orderings, in turn, can be written using the 
exploded logit formula, which reduces reliance on simu
lation methods and thus facilitates estimation.

Finally, we take these estimates and simulate search 
intensity, consumer surplus, and platform revenue under 
different ranking algorithms. We compare our ranking 
algorithm optimized for consumer surplus for K� 3 
(i.e., we brute force the top three positions, then pro
ceed greedily) to a straight utility ranking, an algo
rithm optimized for revenue, and the Expedia ranking 
itself. We find that our algorithm optimized for con
sumer surplus dominates the Expedia algorithm under 

our model, raising consumer surplus by $1:21 per con
sumer and still raising revenue by 8¢ per customer. 
Ranking directly by utility is less effective, raising con
sumer surplus by around 60¢ relative to Expedia and 
reducing revenue by 15¢. These numbers are at the 
search impression level; because only around 13% of 
customers purchase, one should scale the figures up 
by seven to eight times to obtain numbers per purchas
ing consumer.

1.1. Related Literature
The paper that is perhaps closest to ours is Derakhshan 
et al. (2022), who also study optimal rankings in online 
platforms and propose algorithms based on a micro
founded model of consumer behavior. Relative to this 
recent paper, our main contributions are as follows. 
First, our search model is different, and in particular, it 
allows consumers to search in any order, whereas the 
model in Derakhshan et al. (2022) implies that it is 
always optimal to search in the same order in which 
the products are ranked on the page. This is important 
in our context because more than 80% of the impres
sions in our data violate this restriction,9 indicating that 
other factors beyond rankings affect which product is 
searched at each step. We capture this by letting the res
ervation values depend on product attributes immedi
ately visible on the results page and note that this is a 
key ingredient in our notion of product “potential.” 
Second, we develop an estimation method and show 
that the primitives needed as inputs to our algorithms 
can be pinned down from click and purchase data— 
something that Derakhshan et al. (2022) cite as an ave
nue for future research. Third, we apply our approach 
to a real-world setting to quantify the magnitude of the 
rankings gains as opposed to working with synthetic 
data.

In addition, our work is related to the broader litera
ture on search. Abaluck et al. (2020) estimate consumer 
preferences without committing to a specific search 
model; they show that rankings can be incorporated in 
their approach but do not discuss optimality of rank
ings. A related literature in marketing focuses on the 
determinants of consumers’ consideration sets (see, 
among others, Roberts and Lattin 1991, Mehta et al. 
2003, Honka and Chintagunta 2017, Honka et al. 2017). 
Our search model can be viewed as one way to micro
found the consumer’s decision of which goods to con
sider that is amenable to studying optimal rankings.

Our work is also related to the literature on platform 
design and recommendation systems. Whereas we focus 
on product rankings, other papers study the customiza
tion of email communications to customers (e.g., Ansari 
and Mela 2003) or the amount and type of information 
to display on the results page (e.g., Gardete and Hunter 
2020, Gu and Wang 2022).

Compiani et al.: Online Search and Optimal Product Rankings: An Empirical Framework 
Marketing Science, 2024, vol. 43, no. 3, pp. 615–636, © 2023 INFORMS 617 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

20
5.

22
0.

12
9.

16
] 

on
 0

1 
Fe

br
ua

ry
 2

02
5,

 a
t 1

6:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Next, a large literature in operations research studies the 
assortment optimization problem, that is, deciding which 
products to stock or which ones to show to consumers as 
they search (see Kök and Fisher (2007) for a survey, and 
Jagabathula and Rusmevichientong (2017) and Agrawal 
et al. (2019) for more recent contributions). Unlike most of 
this literature, we focus on optimizing not only revenue, 
but also consumer surplus and on the decision of how to 
rank products as opposed to just which ones to offer.

A literature in computer science and operations studies 
how to rank products to maximize directly quantifiable 
metrics, such as revenue/profits. These papers typically 
assume stylized models of search, such as the cascade 
model (Aggarwal et al. 2008, Kempe and Mahdian 2008, 
Karmaker Santu et al. 2017, Gallego et al. 2020). In con
trast, our approach is based on a microfounded model of 
consumer behavior, enabling us to consider consumer 
surplus—in addition to revenues/profits—and explore 
the trade-off between the two goals.

Finally, the paper is related to the notion of incrementality 
in marketing (e.g., Zantedeschi et al. 2017, Ascarza 2018, 
Hitsch et al. 2018). This literature has found that targeting 
based on customers’ baseline outcomes can perform sub
stantially worse than targeting based on their responsive
ness to treatment. Similarly, we show that ranking based 
on utility levels is suboptimal relative to ranking based on 
the difference between utility and search indices, which is 
a measure of how much rankings can incrementally shift 
consumer choices and welfare.

1.2. Paper Structure
The paper proceeds in three parts. First, we introduce 
the double index search model in Section 2. Then, in Sec
tion 3, we discuss optimal rankings. Finally, we apply 
the approach to the Expedia data in Section 4 and con
clude in Section 5.

2. Model
We consider a setting in which consumers have unit 
demand for a good in a product category. They log on to 
an appropriate platform (e.g., Expedia) and enter a search 
query that describes that category (e.g., “hotel room in 
New York City on November 5”). They are presented with 
a finite set of search results. These products are distinguish
able by the presearch characteristics presented to the user.

Figure 1 shows an example of the search results on 
Expedia for the preceding hotel query. The presearch 
characteristics include the average price per night, photos, 
the number of reviews, and the number of rooms left. In 
the case of keyword searches on Bing or Google, for 
example, the presearch characteristics include whether a 
link is organic or sponsored as well as the link text itself.

Based on what they see, users may choose to either 
perform some other search operation (such as refining 
the query or filtering the results), abandon search, or 

click on one of the options. If they click, they are taken 
to a product page, on which they may learn additional 
product characteristics (e.g., room amenities). They 
may then stop and purchase, continue search, or aban
don search without purchase. At the end of the process, 
they either have picked the best option from those they 
considered (clicked on) or have chosen not to buy at all.

We now formalize this setting. A consumer i has a need 
that may be met by purchasing a single product from a 
finite set of products J ≡ {1, : : : , J} plus the outside option 
(denoted by zero). Consumer i’s utility from good j is

uij � β
Uxj + ξ

U
j + ε

pre
ij + ε

post
ij , (1) 

where xj are characteristics of the product that are cap
tured by the data (e.g., a hotel’s price and star rating); ξU

j 
represents the vertical component of quality that is 
unobserved to the researcher but can be estimated via 
product fixed effects (e.g., the appeal of the photos or 
the content of reviews); and εpre

ij ,εpost
ij are taste shocks idi

osyncratic to consumer i (e.g., i especially likes boutique 
hotels). Consumer i learns uij by searching for product j. 
Depending on the context, the uij index could represent 
either the final consumption utility that the consumer 
derives from the good or (under risk neutrality) the 
expected utility based on the information on the detailed 
product description page. We normalize the mean util
ity of the outside option to zero so that ui0 � ε

post
i0 .

We assume that consumer i knows εpre
ij for all pro

ducts upon landing on the results page and that εpost
ij is 

only revealed when i searches product j by opening the 
corresponding product page.10 Thus, we allow consu
mers to search over their idiosyncratic match value 
εpost

ij , consistent with several papers in the literature. As 
for xj and ξU

j , we do not take a stand on when they are 
revealed to consumers. Some of those attributes, such 
as price, could be immediately visible on the results 
page, but others—for example, the component of qual
ity captured by ξU

j —may only be accessible after click
ing on the product page. Our model accommodates 
both the case in which (xj,ξU

j ) are known to the consu
mers presearch and the case in which they require 
search as well as any intermediate case in which some 
of these attributes are known presearch and the others 
are only revealed after search. Which case is most 
appropriate for a given empirical setting depends on 
the structure of the website/app as well as on what is 
captured by the data available to the researcher. For 
instance, if the data contains detailed information about 
product reviews and other features that are only visible 
on the product page, then those xj variables would only 
be visible to consumers postsearch. We formalize this 
in the following assumptions.

Assumption 1. The researcher observes xj, consumer search 
actions, and consumer choices and can estimate the product 
fixed effects ξU

j .
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Assumption 2. Consumer i knows εpre
ij for all j before engag

ing in search but needs to search j in order to reveal εpost
ij . Prior 

to search, it may be that the consumer knows all of the (xj,ξU
j )

attributes or none of them or only a subset of them for any 
given good.

We also maintain the same assumptions on the 
search process as in Weitzman (1979).

Assumption 3. Consumers search sequentially with free 
recall, are forward-looking, and pay cost cj to open product 
j’s page, which fully reveals uij. The utilities are indepen
dent and identically distributed (iid) across goods condi
tional on the presearch information.

The restriction of conditional independence of utili
ties guarantees that the payoff realization for one prod
uct does not cause consumers to update about the 
payoff distributions of the remaining products.11

If we let I ij be consumer i’s information set about 
product j presearch, the results in Weitzman (1979) 
yield the optimal search strategy. Specifically, con
sumer i forms a reservation value sij for each product j, 
which is defined as the solution to

cj �

Z ∞

sij

(u� sij)fuij |I ij(u)du, (2) 

where fuij |I ij is the density of uij given consumer i’s infor
mation set. Search optimally proceeds in descending 
order of reservation values until the highest utility uncov
ered exceeds the next best value of sij, at which point i 
stops searching and chooses the good with the highest 
utility among those searched. The payoff from the outside 
option, ui0, is known presearch (i.e., we can set si0 �∞) so 
that, if ui0 is higher than sij for all j ≥ 1, then consumer i 
leaves the results page without searching any products.

Figure 1. (Color online) Search Results Page from Expedia 
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The reservation values are to be interpreted as some 
combination of the visibility, salience, and presearch 
observable attractiveness of the products. Because the 
ranking of a product affects how easy it is for consu
mers to reach its page, the search costs cj—and, thus, 
the reservation values sij—are likely to be a function of 
rankings. Therefore, we specify the reservation values, 
or search indices, as

sij � β
Sxj + ξ

S
j + f (rj) + ε

pre
ij + ε

S
ij, (3) 

where rj is the rank of each product on the page with a 
higher value indicating a more salient position so that 
f (rj) is an increasing function. Note that, in our model, 
consumer behavior is fully characterized by the set of 
utility indices (1) and search indices (3).

A few comments are in order on the specification of 
the search indices. First, sij depends on εpre

ij in the same 
way that uij does, which is consistent with the fact that 
εpre

ij is known to consumers presearch. In contrast, sij 
does not depend on εpost

ij because that component of 
utility is unknown prior to search. Second, notice that xj 
enters both utility and search indices but with possibly 
different coefficients. This allows for a range of possibil
ities, consistent with Assumption 2. For example, it 
could be that consumers know xj prior to search and 
form expectations based on it regarding the compo
nents of utility that they don’t yet know. Another possi
bility is that xj is not known before search, in which 
case it would not enter the search index, that is, βS � 0. 
A similar argument applies to the unobserved (to the 
researcher) terms ξS

j and ξU
j . Because the relationship 

between ξS
j and ξU

j is left unrestricted—they are esti
mated via two separate sets of hotel fixed effects in the 
empirical implementation—we allow for the case in 
which ξU

j is known to consumers before search (and is 
possibly used to form expectations on the unknown 
parts of utility) as well as the case in which ξU

j is 
unknown prior to search.

In the next sections, we formalize these arguments 
by explicitly working through three possible micro
foundations for the reservation values. In all cases, the 
intuition is the same: because the reservation values are 
linear in the presearch components of utility, if we 
assume that the expectations about the search attributes 
are also linear, it follows that the search indices are lin
ear functions of the presearch attributes plus a term 
f (rj) capturing the effect of search costs. This corre
sponds exactly to the functional form in (3). We empha
size that the following examples are just three possible 
ways to microfound our model and that other options 
are allowed, for instance, hybrid models in which con
sumers know some of the xj attributes (e.g., price and 
brand) prior to search and reveal the remaining xj attri
butes (e.g., location of the hotel) as well as ξU

j via 
search. Because, in estimation, we directly target the 

coefficients in the two indices, we do not have to com
mit to any of these microfoundations, implying that the 
estimation is robust to any of these search patterns.

2.1. Example 1: Search over Quality jU
j and 

Match Value «post
ij

Let utilities take the form in (1). Assume that consu
mers know xj and εpre

ij for all j prior to search and pay 
search cost cj to learn ξU

j and εpost
ij . Further, εpre

ij and εpost
ij 

are iid across products and independent of all other 
variables, and ξU

j are independent across products j 
conditional on the vector of all presearch components 
(xj,ε

pre
j )

J
j�1. Then, Equation (2) takes the form

cj �

Z ∞

sij

(u� sij)fuij |xj,ε
pre
ij
(u)du: (4) 

We now show that these search indices take the form 
we specify in (3). Toward this, assume that the condi
tional distribution of ξU

j belongs to a location family: 
ξU

j � γxj + ξ̃
U
j for some parameters γ and a random var

iable ξ̃U
j with ξ̃U

j ⊥xj. Then, the conditional mean is lin
ear in the product characteristics: E[ξU

j |xj] � γxj. We 
can interpret γ as capturing the relationship between 
product characteristics observed on the search page 
and those that are only observed after clicking through 
(e.g., price could act as a signal of quality).

We can then rewrite the right-hand side of the pre
ceding equation as follows:
Z ∞

sij

(u� sij)fuij |xj,ε
pre
ij
(u)du

�

Z ∞

sij

(u� sij)fξU
j +ε

U
ij |xj
(u� βUxj � ε

pre
ij )du

�

Z ∞

sij

(u� sij)fξ̃U
j +ε

post
ij
(u� βUxj � γxj � ε

pre
ij )du

�

Z ∞

sij�β
Uxj�γxj�ε

pre
ij

(y+ βUxj + γxj + ε
pre
ij � sij)fξ̃U

j +ε
post
ij
(y)dy ,

(5) 

where the first equality follows from the relationship 
between the conditional densities of uj and (ξU

j ,εpost
ij ), the 

second from the location family assumption, and the 
third by the change of variable y � u� βUxj� γxj � ε

pre
ij . 

Now, let ρj be the solution of cj �
R∞
ρj
(y� ρj)fξ̃U

j +ε
post
ij
(y)dy, 

and let βS � βU + γ. Then, if we let the search index take 
the form sij � β

Uxj + γxj + ρj + ε
pre
ij ≡ β

Sxj + ρj + ε
pre
ij , we 

may substitute into (5), and verify that sij indeed satisfies 
(4). Note that βS � βU + γ is in general different from βU 

if γ≠ 0 because of consumers forming expectations on 
ξU

j based on xj. For example, if consumers infer that a 
higher price xj is associated with better quality ξU

j , then 
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we have γ > 0 and, thus, βS > βU. Finally, suppose that 
search costs are determined by rankings and decrease in 
rank (i.e., high-rank products have low search costs). 
Then, it follows that the thresholds ρj are a function of 
rankings, that is, ρj � f (rj) for some unknown increasing 
function f (·).

Putting this all together, we have sij � β
Sxj + f (rj)

+εpre
ij . This functional form for the search index is sub

sumed by the specification in (3). Specifically, (3) 
includes the additional ξS

j + ε
S
ij term, which represents 

anything that affects the salience of product j besides 
what is captured by the ranking rj. An example of this 
is consumer heterogeneity in search costs as well as any 
mistakes that consumers may make in calculating the 
optimal reservation values. Alternatively, if different 
goods have different distributions of ξ̃U

j , then the term 
ξS

j captures this; for instance, if the variance of ξ̃U
j is 

higher than that of ξ̃U
k , it is well-known that the reserva

tion value of j is higher (because there is more upside to 
searching j), which is captured by ξS

j being larger than 
ξS

k .12 In the empirical implementation, the terms ξS
j are 

estimated via fixed effects and thus are left unrest
ricted, whereas the shocks εS

ij are helpful to smooth out 
the likelihood function (see Section 4.2).

2.2. Example 2: Search over Attributes xj and 
Match Value «post

ij
Nothing in the derivations from the last section hinges 
on the fact that xj is observed by the researcher and ξU

j 
is not. Thus, an analogous argument holds for the case 
in which the role of the two terms is flipped; that is, 
consumers know ξU

j prior to search and learn xj upon 
searching product j. Specifically, let xj � γ̃ξ

U
j + x̃j, and 

let consumers form expectations on xj based on E(xj 
|ξU

j ) � γ̃ξ
U
j . Then, derivations similar to the preceding 

lead to the functional form sij � ξ
U
j (1+ βUγ̃) + ρj + ε

pre
ij , 

where ρj solves cj �
R∞
ρj
(y� ρj)fβUx̃j+ε

post
ij
(y)dy. This speci

fication for the search index is subsumed by that in (3) 
by letting ξS

j ≡ ξ
U
j (1+ βUγ̃) and βS � 0. As before, the 

functional form in (3) contains the additional error term 
εS

ij, which captures heterogeneity in search costs and/or 
any factors affecting the salience of product j above and 
beyond what the fully rational model predicts.

2.3. Example 3: Search over Match Value «post
i, j

If consumers know (xj,ξU
j ) presearch and only learn 

εpost
i, j upon clicking on product j, then an analogous deri

vation to that in Section 2.1 leads to the following 
expression for the search indices:

sij � β
Uxj + ξ

U
j + f (rj) + ε

pre
ij + ε

S
ij, 

which is a special case of the specification in (3) with βS �

βU and ξS
j � ξ

U
j . Intuitively, if consumers only search 

over the idiosyncratic shocks εpost
i, j —which are assumed 

to be independent of everything else—then their search 

indices are simply going to equal the part of utility that 
they observe presearch (i.e., βUxj + ξ

U
j + ε

pre
ij ) plus the 

term f (rj) capturing the search cost. Note that, in this 
case, xj and ξU

j enter both the utility and the search indi
ces in the same way because, by independence of 
εpost

i, j , E(εpost
i, j |xj, ξU

j ) � 0, and thus, xj and ξU
j do not carry 

any extra information about εpost
i, j in the search index.13 As 

before, we also include the additional search shock εS
ij , 

which helps us smooth out the likelihood. This example 
shows that our model accommodates the case in which 
consumers only search over their match value εpost

i, j , which 
is commonly considered in the literature.

We reiterate that the models in Sections 2.1–2.3 are 
just three possible microfoundations for the double 
index specification. In particular, other Weitzman mod
els in which consumers search a subset of the (xj,ξU

j )

variables—on top of εpost
ij —are possible.

2.4. Can Rankings Affect Consumers’ 
Expectations?

In the preceding microfoundations, we focus for nota
tional convenience on the case in which rankings only 
affect search costs but do not directly enter utility. How
ever, our framework can also accommodate the possibil
ity that consumers form expectations on the search 
attributes based on rankings. For instance, in the first 
example (Section 2.1), it could be that consumers expect 
a higher value of quality ξ̃U

j when a product is ranked 
higher. Then, the expectation in (5) is taken over the dis
tribution of ξ̃U

j + ε
post
ij conditional on rj. As a result, the 

term ρj showing up in the search index would depend 
on rj not just because worse rankings lead to higher 
search costs, but also via the expectations channel. 
Because we are modeling ρj as a flexible function of 
rankings—to be estimated via position fixed effects— 
our framework can accommodate this.

One limitation is that, because we do not model the 
process whereby consumers form expectations about 
postsearch attributes based on rankings, we have to 
assume that this process is unchanged in our counterfac
tuals. Thus, for example, Expedia users have the same 
beliefs about the postsearch quality of a hotel ranked in 
the first position as the ranking algorithm changes. 
There are two main reasons for this choice. First, changes 
in the proprietary ranking algorithm used by a platform 
are usually not announced to the public, and thus, it is 
reasonable to assume that consumers would not react to 
those changes in the short-to-medium term. In the long 
run, we might expect consumers to realize that the rank
ing algorithm has changed and update their beliefs 
accordingly—especially if they interact with the plat
form often—and so we view our analysis as one that 
best captures patterns in the short-to-medium run. How
ever, even in the long run it is not clear that users would 
have fully rational expectations given the complexity 
and lack of transparency of many algorithms. Second, 
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allowing consumers to update their beliefs substan
tially complicates the task of finding optimal algo
rithms. In particular, one would need to solve for a 
fixed point: the optimal ranking is such that consu
mers’ beliefs react to it in a way that makes it optimal 
for the platform to choose exactly that ranking. Finally, 
we note that the welfare gains from optimally ranking 
products are likely to be even larger than our estimates 
if consumers adjust their beliefs. This is because, if con
sumers anticipate that rankings are optimized, they 
need to search less before finding a product that is suf
ficiently good, implying search cost gains above and 
beyond our estimates.

3. Optimal Rankings
Online platforms can influence what is bought through 
their product rankings. In our model, this is captured 
by the term f (rj) in the reservation values. With this in 
mind, we now turn to the problem of optimizing those 
rankings. We consider two main objective functions: 
maximizing consumer surplus—an appropriate target 
for a platform trying to maximize the size of its user 
base or for a policy-maker—and maximizing reve
nue.14 For any given search query, platforms can decide 
how to order the results that they return. Assuming 
that each search query corresponds to a fixed set of rele
vant products J , the problem is then to determine 
which of those products to rank and how to rank them. 
The platform may choose not to present all products to 
the consumer. This is equivalent to allowing the plat
form to set a product’s rank to be zero with f (0) ��∞
so that this product is never considered. However, we 
rule out “gaps” in the ranking: if there is a product 
ranked in position L, then positions 1: : :L� 1 must be 
filled. The analysis in this section is conditional on a 
search query and, thus, can seamlessly incorporate 
additional information that the platform might have on 
the consumer, delivering personalized rankings.

We assume that the platform knows both the mean 
baseline search index βSxj + ξ

S
j and the mean utility 

βUxj + ξ
U
j as well as the rankings function f (·). We 

think it is realistic to assume this given that platforms 
have access to rich data, including data from experi
ments, that allow them to obtain good estimates of the 
quality and salience of each option. Indeed, in the 
empirical application, we propose one way to estimate 
these objects based on click and choice data, which are 
readily available to platforms.

3.1. Choice Probabilities and Consumer Surplus
First, we state a lemma that characterizes the relation
ship between the search and utility indices and the 
product eventually purchased. This result is a minor 
modification of an existing result by Choi et al. (2018) 
for the Weitzman (1979) model, and we adopt their 

name for the result (see also Armstrong and Vickers 
2015, Kleinberg et al. 2016, Armstrong 2017). Let si ≡

(si0, si1, : : : , siJ) and similarly for ui.

Lemma 1 (Eventual Purchase). A consumer facing a choice 
set consisting of (si, ui), including an outside option with 
si0 �∞, purchases a product j ∈ J ∗, where J ∗ � arg maxj∈J 

vij for vij �min{sij, uij}.

Proof. See Online Appendix A.2. w

In words, it is the product with the highest minimum 
of search and utility indices that gets purchased. We 
call this quantity vij �min{sij, uij} the effective index of 
the product. Note that consumers only know uij for the 
products they searched, but they still end up choosing 
the good that maximizes the effective index across all 
products. One implication of Lemma 1 is that products 
with high utility but low search indices are rarely pur
chased. In other words, a product needs to be both 
good (high uij) and salient (high sij) in order to have a 
high market share.

We now show that Lemma 1 yields convenient 
expressions for choice probabilities and average con
sumer surplus under a standard assumption on the dis
tribution of εpre

ij . We begin by fixing the εS
ij,ε

post
ij shocks; 

these are integrated out at the end. Let δS
ij � β

Sxj + ξ
S
j +

εS
ij be the mean search index (before the effect of rank

ings), δU
ij � β

Uxj + ξ
U
j + ε

post
ij be the mean utility, and 

δV
ij (rj) ≡min{δS

ij + f (rj),δU
ij } be the mean effective index. 

Define φij(rj) ≡ δ
U
ij � δ

S
ij � f (rj) to be the potential of 

product j—that is, the difference between the mean 
utility and search indices, inclusive of the rankings 
effect. This potential captures how much better the 
product is (on average) than it appears to be based on 
the information displayed on the results page as well as 
its ranking. We can now derive convenient formulae 
for the choice probability functions and the average 
consumer surplus. The latter is defined to be the aver
age utility of a consumer on the platform, gross of any 
search costs, for which the average is taken over all 
consumer-specific unobservables (εS

i ,εpre
i ,εpost

i ).

Proposition 1 (Aggregate Demand and Consumer 
Surplus). Let r ≡ (r1, : : : , rJ), and assume that εpre

ij is drawn 
from a Gumbel distribution independently across goods. 
Then, the probability of a consumer choosing product j is 
given by

P(Choose j) ≡ qj(r) �
Z

qij(r)dFεS
i ,εpost

i
, 

where qij(r) ≡
exp δV

ij (rj)

1+
P

k
exp δV

ik(rk)
and FεS

i ,εpost
i 

is the distribution of 

(εS
i ,εpost

i ).
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Further, the average consumer surplus is given by

CS ≡ C +
Z "

log
 

1 +
X

j
exp δV

ij (rj)

!

+
X

j:φij(rj)>0
qij(r)φij(rj)

#

dFεS
i , εpost

i
, (6) 

where C is the Euler constant.

Proof. See Online Appendix A.3. w

This proposition says, first, that the choice probabil
ities are determined by the mean effective indices 
according to the standard logit form (integrated over 
εS

ij,ε
post
ij ). This is simply a consequence of Lemma 1 and 

the extreme value distribution assumption on εpre
i, j . The 

consumer surplus, on the other hand, differs from the 
standard log-sum form—corresponding to the first 
term inside the integral in (6)—in that it has an addi
tional term that binds only for products whose utility 
is higher than the search index or, equivalently, whose 
potential φij is positive (diamonds in the rough).15 The 
reason is that although choices are based on effective 
indices δV

ij , consumer surplus is based on utility, and 
so whenever the utility exceeds the effective index, 
this must be counted too (it can’t be less than the effec
tive index because of the min operator in the definition 
of effective indices). This characterization of consumer 
surplus is a key building block in the analysis that 
follows.

Note that, whereas our model features search costs, 
the formula for consumer surplus does not account for 
the reduction in welfare because of the search effort, 
but only for the effect that search costs have on the 
quality of the final choice made by consumers.16 This 
may be appropriate for online environments, in which 
the time costs of search are often small. But one may 
reasonably be concerned that these search costs are 
important in practice, and so in our application, we 
track the average number of clicks under different algo
rithms as an additional performance metric and find 
that the proposed algorithms essentially do not change 
the number of searches relative to the status quo. In 
contexts in which this is not the case—particularly if 
the proposed consumer surplus–optimizing algorithm 
yields substantially more searches—one can use one of 
the microfoundations of the model and the estimated 
parameters to back out search costs (e.g., from (4)) and 
then account for the latter in the welfare calculation.

3.2. Optimizing Consumer Surplus
We want to match products to ranks in such a way as to 
maximize consumer surplus. This matching problem is 
discrete and, therefore, not amenable to standard tech
niques. So we begin instead with a relaxation of the 
problem in which ranks can be assigned continuously 

subject to a budget constraint that may hold with 
inequality (because the platform can choose not to list 
some products at all, leaving some “surplus” ranks). 
Let f (·) now be defined on the reals with f ′ ≥ 0, and let 
CS(r,δS,δU) denote the average consumer surplus as 
a function of the vectors of rankings r and average 
indices δS,δU; that is, we let δS

j ≡ β
Sxj + ξ

S
j (so that 

δS
ij � δ

S
j + ε

S
i, j) and similarly let δU

j ≡ β
Uxj + ξ

U
j . Then, the 

problem is

max
r1: : : rJ

CS(r,δS,δU)

subject to
X

j:j is listed
rj ≤

J(J + 1)
2 , 

where the budget J(J + 1)=2 � 1+ 2+⋯ +J corresponds 
to the total “ranking power” available.

The optimal solution has the property that the partial 
derivative of the consumer surplus is equal for all 
products that are ranked: ∂CS(r,δS,δU)=∂rj � λ ∀ j ∈ L, 
where L is the set of products listed, and when all pro
ducts are listed, λ is the Lagrange multiplier on the 
budget constraint. If it is feasible to choose ranks so that 
δS

ij + f (rj) ≥ δ
U
ij ∀ j and i (i.e., every product has a higher 

search index than its utility index), it is also optimal for 
consumer surplus. The reason is that the mean effective 
indices, min{δS

ij,δ
U
ij }, are ordered in the same way as 

mean utilities so that the highest utility products are 
most often purchased.

However, in most cases, it is not possible to promote 
all products enough to achieve this, and some products 
need to be prioritized. To see which products benefit 
most from higher rankings, we take the derivative of 
consumer surplus with respect to rj:

∂CS(r, δS, δU)

∂rj
�

Z

{εS
ij�ε

post
ij < δU

j �δ
S
j �f (rj)}

qij r( )f ′(rj)

× φij(rj)�
X

k:φik(rk)>0
qik(r)φik(rk)

0

@

1

AdFεS
i , εpost

i
,

(7) 

where, again, qij denotes the choice probability of prod
uct j for a consumer with shocks (εS

i ,εpost
i ). We derive 

this expression in Online Appendix A.4. The intuition 
for it is in two parts. When δS

j + f (rj) + εS
i, j ≥ δ

U
j + ε

post
ij so 

that the effective index of j is determined by the utility, 
marginally improving the ranking of the product (i.e., 
increasing rj) will not change the choice probabilities 
and hence has no effect on consumer surplus. This is 
why the integral in the expression excludes realizations 
of (εS

i ,εpost
i ) resulting in the search index being larger 

than the utility index. On the other hand, when δS
j +

f (rj) + εS
i, j < δ

U
j + ε

post
ij , improving a product’s ranking 

increases its choice probability on the margin. Whether 
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this is good or bad for consumers depends on the sign 
of the expression in parentheses in (7), which relates 
the potential of product j to a weighted sum of the 
potentials of all products with positive potential.17 If j 
offers a potential φij that is higher than the other pro
ducts, then consumer surplus increases if product j is 
promoted (higher rij). This is because, in this case, 
product j tends to deliver a positive surprise to consu
mers when they search it (diamond in the rough); 
thus, making it more salient on the results page leads 
more consumers to click on it and eventually choose 
it. In contrast, when j offers a potential φij that is lower 
than the other products, then it is best to reduce the 
rankings power allocated to it, that is, demote j. Intui
tively, in this case, product j tends to deliver a negative 
surprise—or a not-as-positive surprise—relative to its 
competitors (clickbait), and thus, it is optimal to steer 
consumers toward other products.

A key insight from (7) is that, in order to maximize 
consumer surplus, the platform should promote pro
ducts with the highest baseline potential, which need 
not be those with the highest utility levels. As an exam
ple, consider two hotels A and B with δU

A > δ
U
B (e.g., A is 

a chain hotel with more amenities and a lower price 
than B) and δU

A � δ
S
A < δ

U
B � δ

S
B (e.g., B is a small bou

tique hotel with a lower baseline salience δS
B). Because 

the baseline potential of B is higher, it is optimal for 
consumer surplus to promote B over A even though A 
has a higher utility. Thus, the optimal ranking need not 
be the same as the ranking of products based on their 
utilities. In our empirical application, we indeed find 
that the utility ranking is suboptimal. Note that this 
insight hinges crucially on the fact that we allow consu
mers to uncover vertical components of utility (ξU

j 
and/or elements of xj) via search because this is what 
drives the possible wedge between the average utility 
δU

j and the average baseline search index δS
j . In fact, if 

consumers only searched over match value εpost
i, j , then 

the platform would have no private information and 
thus no scope to use rankings to predictably generate 
any positive surprises. In this case, it is optimal to rank 
products by utility.

One aspect that is not captured by the model is the 
fact that, if a very obvious good choice is not ranked at 
the top, users may mistrust the platform and leave. For 
instance, if someone is looking up tourist attractions in 
Paris and the platform does not rank the Louvre in one 
of the top positions, this may raise a red flag. This is 
especially a concern for cases in which products are 
clearly vertically differentiated (most people agree that 
the Louvre is a top attraction). On the other hand, in 
contexts in which products exhibit more horizontal 
differentiation—such as hotels, for which quality is 
traded off against price—then this mechanism may not 
be as prevalent.

The argument so far has treated rankings as continu
ous. However, in practice, f (·) is bounded, and each 
rank is discrete and associated with a fixed jump in its 
impact on a product’s search index. It may no longer be 
possible to equate potentials, for example, some high- 
utility products may have such low search indices that, 
even with favorable rankings, they are ignored by con
sumers, and from the point of view of the platform, this 
is “wasted” promotion. In view of this, an algorithm 
that respects the discrete nature of the problem is 
needed.

3.2.1. The OPT-K Algorithm. The discrete ranking 
problem is combinatorial in the number of positions 
and, therefore, demands a computationally tractable 
algorithm. We propose the following algorithm, which 
we label OPT-K: instead of ranking all J products, let us 
instead consider the simpler problem of assigning pro
ducts to the first K (or fewer) positions to maximize the 
consumer surplus from that assignment, which we 
denote by CSK, that is,

CSK � C +
Z "

log
 

1 +
X

j:rj≥J�K+1
exp δV

ij (rj)

!

+
X

j:φij(rj)>0, rj≥J�K+1
qij(r)φij(rj)

#

dFεS
i , εpost

i
, 

where rj now represents the discrete rank of each prod
uct defined as J� positionj + 1 (so, again, higher is bet
ter). Maximizing CSK by brute force requires only 
PK

k�1 J!=(J� k)! evaluations18 and, thus, scales better 
than the brute force approach—that is, trying all possi
ble combinations for up to J positions—which requires 
PJ

k�1 J!=(J� k)! evaluations. Further, the computational 
gap between the two increases the smaller K is relative 
to J. Of course, only focusing on the top K ranks entails 
a loss of consumer surplus, and it is natural to consider 
conditions under which this loss is guaranteed to be 
reasonably small. The next result addresses this.

Proposition 2 (Approximate Optimality). Let K ≤ J, and 
assume that, for any feasible ranking, (i) δS

ij + f (rj) < �1, 
∀rj < J�K+ 1 and (ii) 

P
j:rj < J�K+1�(δ

S
ij + f (rj))exp(δS

ij+

f (rj)) < ν. Then, the gap between the consumer surplus 
achieved by optimally allocating all J positions and that 
achieved by optimally allocating the first K positions can be 
bounded as follows:

CS(r∗)�CS(rK) ≤ ν log 1+
XJ

j�1
exp(δU

j )

0

@

1

A+
2� ν
1� ν

0

@

1

A, 

where r∗ ∈ arg maxr CS and rK ∈ arg maxr CSK.

Proof. See Online Appendix A.5. w
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Proposition 2 says that, if all products placed after posi
tion K (i.e., those with low ranks) are unlikely to be 
bought because their search indices become very low 
(i.e., ν is small), then optimizing product assignments for 
the first K positions delivers close to optimal consumer 
surplus. This is because the bound on the right-hand side 
of the inequality decreases as ν gets smaller. To interpret 
assumptions (i) and (ii) in the statement of Proposition 2, 
notice that, if (i) and (ii) hold simultaneously, it must 
be that 

P
j:rj < J�K+1exp(δS

ij + f (rj)) < ν for any feasible 
ranking because �(δS

ij + f (rj)) > 1. This, in turn, implies 
P

j:rj < J�K+1qij < ν. Therefore, the assumptions can be 
viewed as requiring the combined choice probabilities of 
the products placed after position K to be small enough. 
Conversely, if products ranked after position K are rela
tively likely to be purchased (high ν), only focusing on 
the top K positions may incur a substantial loss of con
sumer surplus.

What makes the result of Proposition 2 tricky to 
prove is that the decision of how to rank any one prod
uct affects the choice probabilities for all other pro
ducts. By doing an exhaustive search over the top K 
positions, we can guarantee approximate optimality 
whenever the remaining positions bury the products 
placed there sufficiently so that they are rarely bought. 
Many online environments have the property that the 
top-ranked products get the vast majority of clicks, in 
which case there may be a reasonably small K for 
which the ν bound is reasonably tight. In Section 3.4, 
we present simulation evidence to quantify how much 
welfare is left on the table in practice and, on the flip 
side, what the computational gains are for various 
values of K.

3.2.2. Ranking the Remaining J2K Products. The 
OPT-K algorithm focuses on the top K positions and 
does not prescribe how to rank the remaining J�K pro
ducts. In practice, there may be substantial gains from 
ranking all the products. We now propose a practical 
greedy algorithm for the remaining products and call 
it the OPT-K+Greedy (OPTKG) algorithm.

The greedy algorithm is only needed after the 
OPT-K algorithm ranks all the top K positions. That is, 
if the OPT-K algorithm determines only L<K products 
are needed to maximize consumer surplus, then the 
OPTKG algorithm also terminates. But, if needed, for 
the remaining positions, the greedy algorithm begins 
with the highest remaining rank and myopically 
assigns the best product to each position holding fixed 
all the products that have already been ranked. The 
algorithm terminates when either all positions are 
assigned or for some rank it is best not to assign any 
product to that rank. Algorithm 1 formally presents 
the OPTKG algorithm for consumer surplus optimiza
tion, labeled OPTKG-CS.

Algorithm 1 (OPTKG-CS)
Result: Assign a unique rank position {K+ 1, K+ 2, 
: : : , K+ k}, ∀k ≤ J�K to k unique products.
Initialization: Let fi denote the effect of position i’s 
ranking on the search index.

Set N contains all J�K unranked products.
for position i from K+ 1 to J do

Calculate CSij � CS({rj � f�1(fi), r{1, 2, : : : , J}\N},δS,δU)

for each product j ∈N.
Calculate CSi0 � CS({r{1, 2, : : : , J}\N},δS,δU).
Assign position i to product j such that CSij ∈

arg maxl∈N∪{0} CSil.
if j� 0 then

Break;
else

Update N �N \ j;
end

end.

3.3. Revenue Maximization
The platform might also consider matching products to 
ranks so as to maximize the platform’s revenues. We 
begin again with a relaxation of the problem in which 
ranks can be assigned continuously and then consider 
the discrete problem.

Let πj be the revenue that the platform earns from 
selling product j. We focus on revenue maximization 
because marginal costs are essentially zero for many 
platforms, and thus, revenues correspond to profits. 
However, an analogous argument applies to the case in 
which marginal costs are nonzero and the platform 
maximizes profits. The platform’s revenue maximiza
tion problem can be written as

max
r1: : : rJ

X

j
qj(r)πj

subject to
X

j:j is listed
rj ≤

J(J + 1)
2 :

We let π(r,δS,δU) denote the objective function, that is, 
the expected (per-customer) revenue. The optimal solu
tion has the property that the partial derivative of 
expected revenues is equal for all products that are 
ranked: ∂π(r,δS,δU)=∂rj � ∂π(r,δS,δU)=∂rk ∀ j, k. How
ever, unlike the consumer surplus, even if it is feasible to 
choose ranks so that δS

ij + f (rj) ≥ δ
U
ij ∀ j (i.e., every prod

uct has higher search than utility index), it might not be 
optimal for revenues because consumer utilities are not 
necessarily positively correlated with the revenue from 
each product. Thus, a short-term revenue-maximizing 
platform has an incentive to distort ranks (from a con
sumer surplus perspective) even with unlimited ranking 
power. To get more intuition, take the derivative of plat
form revenue with respect to rj (we derive this in Online 
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Appendix A.6):

∂π(r,δS,δU)

∂rj
�

Z

{εS
ij�ε

post
ij <δU

j �δ
S
j �f (rj)}

qij r( )f ′(rj)

× πj�
X

k≤ J
qik(r)πk

 !

dFεS
i ,εpost

i
:

The expression resembles that of the consumer surplus 
derivative with the revenue margins πj taking the 
place of the potentials φij. But, because the revenues 
are fixed even as the rankings are adjusted, the optimal 
solution is quite different. When there is no outside 
option, the platform should only display the highest 
margin good. The intuition is clear: if consumers buy 
something regardless, steer them in the direction of 
highest revenues.

With an outside option, the platform has to balance 
the probability that the consumer buys anything at all 
with the incentive to push the highest margin pro
ducts. The sign of the derivative depends on the term 
πj �

P
k≤ Jqikπk. This is the revenue from j less the 

choice-probability weighted revenues from all other 
products (which includes the zero-margin outside 
option). So, when most consumers don’t purchase 
anything (i.e., the weighted revenue is close to zero), 
this term is positive and all products are ranked with 
high-margin and high–effective index products get
ting the top spots. But, if consumers who are pre
sented with the full product assortment are likely to 
purchase something, the weighted revenue exceeds 
the revenue offered by some of the products in the 
assortment, and the platform can improve revenues 
by excluding those low-margin products. Platforms 
whose customers are unlikely to shop elsewhere (or 
not buy at all) can therefore afford to choose a product 
assortment that consists mostly of high-margin pro
ducts, whereas platforms with less loyal customers 
cannot.

3.3.1. The OPT-K Algorithm. We propose the analogue 
OPT-K algorithm for revenue maximization: instead of 
ranking all J products, we only consider assignments to 
the first K positions to maximize revenues from those K 
or fewer products. Define

πK �
X

j:rj≥J�K+1
qj(r)πj, 

and let the ranking that maximizes πK be rK. Maximizing 
πK again requires only 

PK
k�1 J!=(J� k)! evaluations.

Proposition 3 (Approximate Optimality). Let K< J, and 
assume that 

P
j:rj< J�K+1qj < ν for any feasible ranking. 

Then, the gap between the revenue achieved by optimally 
allocating all J positions and that achieved by optimally 

allocating the first K positions can be bounded as follows:

π(r∗)�π(rK) ≤ ν max
j
πj, 

where r∗ ∈ arg maxr π and rK ∈ arg maxr πK.

Proof. See Online Appendix A.7. w

Analogously to Proposition 2, Proposition 3 says 
that, if products placed after position K are unlikely to 
be bought, then optimizing product assignments for 
the first K positions can be sufficiently close to the opti
mal ranking for all products. The intuition for the result 
is straightforward: the revenue left on the table by not 
assigning products to positions beyond K is at most 
equal to the probability that consumers choose pro
ducts in those positions times the maximum revenue 
delivered by any one product. As before, it may be use
ful in practice to rank the remaining J�K products. In 
the same way as earlier, we define a greedy algorithm 
OPTKG that maximizes revenues over all possible 
assignments of the first K products and then greedily 
assigns each of the remaining products by checking 
which assignment generates the greatest improvement 
in revenues over the prior assignment, terminating if 
nonassignment is ever the best option.

3.4. Simulations
Whereas Propositions 2 and 3 give theoretical guaran
tees for the performance of the OPT-K algorithm, in 
practice, the algorithm’s performance depends on the 
number of products J and the choice of K and the distri
butions of utilities and revenues as well as whether the 
conditions of the propositions are met. In this section, 
we illustrate, via simulations, the performance of the 
OPT-K algorithm under a wide range of conditions. We 
also discuss in practice how to optimize rankings for 
the remaining J�K products as well as the runtime of 
various OPT-K algorithms.

3.4.1. Simulation Environment. We simulate J� 5 pro
ducts to be assigned to ranks r ∈ {5, 4, : : : , 1}, in which the 
effect of ranking on the mean search index exponentially 
decays; that is, f (r) � A · exp(r� 6) for A ∈ {5, 15, 30}. We 
limit the number of products to five to retain the ability 
to brute force and find the actual best and worst assign
ments as benchmark. Product-specific profits are drawn 
iid from a Lognormal(0, 1) distribution, whereas mean 
search and utility indices of each product are drawn 
from iid normal distributions, that is, δS

j ~ i:i:d:N(0, 0:5)
and δU

j ~ i:i:d:N(µ, 0:5) for µ ∈ {�5, 0, 5}. For each com
bination of (A,µ), we simulate 100 times, for a total of 
900 simulations. For each simulation draw, we first find 
the maximum and minimum consumer surplus CSmax 
and CSmin by enumerating all 

PJ
j�1 J!=(J� j)! possible 

rankings and then report the consumer surplus under 
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the OPT-K algorithm as (CS�CSmin)=(CSmax�CSmin). 
We follow the same procedure for platform revenues.

3.4.2. Results. Table 1 presents the performance results 
of the OPT-K algorithm for both consumer surplus 
and platform revenues. In each simulation, we compare 
three algorithms that differ in how they assign positions 
beyond K: (i) the first, labeled “none” in the table, does 
not assign any products to positions beyond K; (ii) the 
second (“random”) assigns products randomly to posi
tions beyond K; and (iii) the third (“greedy”) corresponds 
to the greedy OPTKG algorithm described earlier.19 We 
repeat this for K � {1, 2, : : : , 5} and note that each of these 
three algorithms is equivalent to the brute force approach 
(i.e., trying all possible rankings of the five products) 
when K�5.

The greedy algorithms consistently achieve more 
than 98% of the consumer surplus and revenue gains. 
This is true even for K� 1, that is, when only the top 
position is brute forced and the remaining four are 
assigned greedily. In contrast, the none and random 
algorithms exhibit a much steeper gradient from K� 1 
to K� 5, highlighting the importance of how the posi
tions beyond K are assigned. Still, all algorithms cap
ture at least 80% of the gains for K ≥ 3.

We now turn to the computational cost of OPTKG. 
The number of evaluations required to execute OPT-K 

is 
PK

k�1 J!=(J� k)!, which scales up quickly with both K 
and J. On the other hand, the greedy algorithm is 
cheap: if OPT-K assigns products to all K positions, 
then the OPTKG algorithm adds at most an additional 
cost of (J�K)(J�K+ 3)=2 evaluations,20 depending on 
how many products end up being assigned. Table 2
compares different OPT-K algorithms in terms of their 
runtimes. We increase the number of products to J�15, 
which is more realistic in practice: it roughly represents 
the first full page of search results that are most salient 
to consumers on a typical platform. With an otherwise 
similar simulation environment, we run various OPT- 
K algorithms for five times for each set of parameters. 
Whereas runtimes increase quickly with K, the OPT-K 
algorithm remains computationally feasible for small K 
when J�15. The additional cost of the OPTKG algo
rithm is small and does not meaningfully scale with K. 
Runtime for consumer surplus and platform revenues 
are similar. We conclude that, in our simulations, the 
OPTKG algorithm is computationally feasible and close 
to optimal for small K. Based on these results, we use 
the OPTKG algorithm with K�3 in our empirical 
application.

4. Empirical Application
We apply our method to study the customer search and 
choice data from a hotel booking platform (Expedia). 

Table 1. OPT-K Performance

J � 5; 9× 100 simulations
Consumer surplus, % Platform revenues, %

Positions K+ 1, : : : J None Random Greedy None Random Greedy

K � 1 37.4 85.6 98.2 82.3 63.0 98.2
K � 2 62.6 89.0 98.8 93.7 92.5 98.1
K � 3 83.6 92.0 98.3 97.5 96.7 98.5
K � 4 90.5 94.9 99.2 99.7 98.3 99.7
K � 5 100 100 100 100 100 100

Notes. Simulation results of OPT-K algorithm performance for consumer surplus and platform revenues with J � 5 products. Positions 
K+ 1, : : : , J assign (i) no products, (ii) randomly ordered products, or (iii) products according to OPTKG. Performance is first normalized by 
(Q�Qmin)=(Qmax �Qmin), where Q ∈ {CS,π} and Qmin and Qmax are obtained via enumeration, and then averaged across nine combinations of 
parameters (A,µ) × 100 simulations per each set of parameters.

Table 2. OPT-K Runtime (in Seconds)

J � 15; 9× 5 simulations
Consumer surplus Platform revenues

Positions K+ 1, : : : J None Greedy None Greedy

K � 1 0.06 1.71 0.09 1.86
K � 2 0.37 0.71 0.58 1.32
K � 3 4.28 4.51 5.69 5.95
K � 4 52 52 77 77
K � 5 880 879 891 893

Notes. Simulation results of OPT-K algorithm runtime for consumer surplus and platform revenues in 
seconds with J� 15 products. Positions K+ 1, : : : , J assign (i) no products or (ii) products according to 
OPTKG. Runtimes are averaged across nine combinations of parameters (A,µ) × 5 simulations per each set 
of parameters.
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Using our demand estimates, we compare our optimal 
ranking algorithm to both a utility-based ranking and 
the Expedia ranking, evaluating how they each perform 
with respect to revenue, consumer surplus, and number 
of searches.

4.1. Data and Descriptive Evidence
Our data come from Expedia and are made available 
through Kaggle.com, an online platform on which data 
miners can use data sets to take part in competitions 
posted by companies. We refer the reader to Ursu 
(2018) for a comprehensive discussion of the data; here, 
we focus on the features that are most directly relevant 
to our analysis. The Expedia data are composed of 
two data sets, training and testing data sets. Both data 
sets contain customer search and choice records from 
November 2012 to June 2013 among 34 different mar
kets. There are 120,883 search impressions in the train
ing data and 276,644 impressions in the testing data.21

Both training and testing data contain only impressions 
for which customers searched at least once, and each 
impression displays 5 to 38 different hotels. There are 

124,561 hotels in the training data and 130,136 hotels in 
the testing data. We observe their rating, price, country, 
review score, whether it belongs to a chain or not, and 
location score. Further, we observe whether the hotel is 
being clicked on and whether the hotel is booked.

The main difference between the two data sets is 
that, in the training data, hotels are ranked randomly, 
whereas in the testing data, hotels are ranked according 
to the (proprietary) Expedia algorithm. The advantage 
of the training data is that we can identify the effect of 
rankings on the customer search index without having 
to worry about endogeneity of ranks. Although we 
observe whether a customer searched a hotel or not, we 
do not observe the order of search. In the estimation, 
this requires us to integrate out along all possible per
mutations of search paths. Table 3 shows summary 
statistics for hotel characteristics in the training and 
testing samples. One can see that the hotel characteris
tics have very similar distributions in the two samples 
except that prices are slightly lower in the testing sam
ple. Table 4 shows summary statistics on consumer 
behavior. First, consumers face fairly large choice sets, 

Table 3. Summary Statistics: Hotel Characteristics

Observations Mean Median
Standard 
deviation Minimum Maximum

Training sample
Star rating 2,922,728 3.17 3.00 1.06 0 5
Review score 2,922,728 3.69 4.00 1.17 0 5
Chain 2,922,728 0.60 1.00 0.49 0 1
Location score 2,922,728 2.88 2.83 1.55 0 6.98
Price 2,922,728 164.90 128.00 145.20 0 5,000
Promotion 2,922,728 0.20 0 0.40 0 1

Testing sample
Star rating 6,947,458 3.18 3.00 1.04 0 5
Review score 6,947,458 3.81 4.00 1.01 0 5
Chain 6,947,458 0.65 1.00 0.48 0 1
Location score 6,947,458 2.87 2.77 1.52 0 6.98
Price 6,947,458 149.30 120.00 112.50 0 5,000
Promotion 6,947,458 0.22 0 0.42 0 1

Notes. The table shows summary statistics of hotels. An observation is a hotel impression so that hotels are weighted by their appearance in 
search results.

Table 4. Summary Statistics: Consumer Behavior

Observations Mean Median
Standard 
deviation Minimum Maximum

Training sample
Number of hotels in choice set 120,883 24.18 28.00 9.19 5 38
Number of searches 120,883 1.10 1.00 0.43 1 5
Indicator for purchase 120,883 0.13 0 0.34 0 1

Testing sample
Number of hotels in choice set 276,644 25.11 30.00 9.08 5 38
Number of searches 276,644 1.08 1.00 0.38 1 5
Indicator for purchase 276,644 0.94 1.00 0.24 0 1

Note. The table shows summary statistics for consumer behavior at the search impression level.
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consisting of around 25 hotels on average. In spite of this, 
consumers only search slightly more than one hotel on 
average, suggesting that rankings are likely to play an 
important role in driving final choices. There is, however, 
heterogeneity in search with some consumers clicking on 
several hotels. Note that, in order to keep the integration 
along search paths tractable, we drop impressions for 
which customers searched more than five times, which 
corresponds to around 0.5% of the overall sample.

Next, we provide some descriptive evidence to moti
vate our model. Figure 2 shows the relationship between 

the number of clicks and the number of bookings for the 
same hotel in the training data.22 Whereas hotels that are 
clicked more often also tend to be booked more, there is 
also substantial independent variation in the two vari
ables. This suggests that search and choice patterns are 
driven by two distinct mechanisms, which motivates 
our double index model. In other words, a model featur
ing a single index, such as a standard discrete choice 
model, is not likely to fit the data well.

Second, we look at the ranking algorithm used by 
Expedia in the testing data. Figure 3 relates a hotel’s 
average position in the testing data with the number of 
clicks (left panel) and bookings (right panel) in the 
training data. We expect that hotels that are more often 
clicked and purchased in the training data (in which 
ranks are assigned randomly) are the ones that Expedia 
would choose to rank more favorably in its own algo
rithm. This is indeed the case.

Finally, Figure 4 shows how the probability of click
ing and booking a hotel varies with the average hotel 
position across the two data sets. As expected, better 
positions are associated with higher click probabilities 
on average in both data sets (left panel). However, the 
slope of the relationship is steeper in the testing data. 
This is consistent with the idea that Expedia is optimiz
ing its rankings so that the hotels ranked in the first few 
positions are relatively more attractive than random 
hotels. Notice also that the probability of searching a 
hotel in position 30 or above (i.e., lower rank) declines 
to almost zero in the testing data but is still relatively 
high in the training data. This suggests that, when rank
ings are not optimized, consumers end up having to 
search further. Turning to bookings, the right panel of 

Figure 2. (Color online) Clicks and Bookings 

Notes. The figure shows the relationship between the number of 
clicks and the number of bookings for the top 50 most displayed 
hotels in the training data. Each dot corresponds to a hotel, and the 
best linear fit is plotted.

Figure 3. (Color online) Clicks and Bookings in the Training Data as a Function of Average Expedia Position 

Notes. The figure shows the relationship between the average position of a hotel in the testing data and its click rank in the training data (left 
panel) and its booking rank in the training data (right panel). Each dot corresponds to a hotel, and the best linear fit is plotted.
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Figure 4 shows similar patterns: the booking rate 
declines more rapidly as a function of rank in the test
ing than the training data, and low-ranked hotels are 
sometimes booked in the training data but almost never 
in the testing data.23

4.2. Estimation
We now discuss how we estimate our model of search 
and choice. As discussed in Section 2, our model fea
tures two indices per hotel with the following specifica
tions:

sijt � β
Sxjt + f (rjt) + ξ

S
j + ε

pre
ijt + ε

S
ijt

uijt � β
Uxjt + ξ

U
j + ε

pre
ijt + ε

post
ijt : (8) 

Note that we now include a t subscript to denote the 
impression in which a given hotel is shown to consu
mers. To facilitate estimation, we take the shocks εpost

ijt 
and εS

ijt (in addition to εpre
ijt ) to be distributed iid Gumbel. 

We also assume that the observed hotel characteristics, 
including price, are exogenous conditional on the hotel 
fixed effects ξU

j .24 Note that rankings are exogenous by 
construction in the training data because they are 
randomized.

We estimate the model via maximum likelihood. 
In order to write the likelihood of each consumer’s 
observed click and purchase outcomes, we proceed in 
three steps. First, we exploit a convenient property of the 
Gumbel distribution to obtain a closed form for the out
come probability for any given search sequence, condi
tional on a realization of the vector εpre

i ≡ (ε
pre
i1 , : : : ,εpre

iJ ). 
Then, because the search sequence is not observed in the 
data, we sum over all possible sequences to obtain the 

probability of the observed outcome given εpre
i . Finally, 

we integrate out εpre
i .

To illustrate, consider a simple example with two 
hotels and an outside option, and suppose that the 
data tells us that consumer i searches both hotels and 
books hotel 1. This set of outcomes is consistent with 
two search sequences: 
• Search hotel 1, then 2, then book 1 (sequence A).
• Search hotel 2, then 1, then book 1 (sequence B).
Dropping the t subscripts for simplicity, the only 

possible ordering of the search and utility indices asso
ciated with sequence A is

si1 ≥ si2 ≥ ui1 ≥ ui2, ui0: (9) 

This is because (i) si1 ≥ si2 ≥ ui0 given that both hotels 
are searched and 1 is searched before 2; (ii) si2 ≥ ui1 
because 2 is searched after ui1 is revealed; and (iii) ui1 ≥

ui2, ui0 because 1 is chosen. Under the maintained 
assumptions and for fixed (εpre

i1 ,εpre
i2 ), the probability of 

the ordering in (9) is equal to

exp(δS
i1)

1+ exp(δS
i1) + exp(δS

i2) + exp(δU
i1) + exp(δU

i2)

×
exp(δS

i2)

1+ exp(δS
i2) + exp(δU

i1) + exp(δU
i2)

×
exp(δU

i1)

1+ exp(δU
i1) + exp(δU

i2)
, (10) 

where, as before, we let δS
ij � β

SxS
j + f (rj) + ξ

S
j + ε

pre
ij and 

δU
ij � β

Uxj + ξ
U
j + ε

pre
ij for j�1, 2. The expression in (10), 

sometimes referred to as the exploded logit trick (e.g., 

Figure 4. (Color online) Probability of Clicking and Booking as a Function of Position 
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Notes. The figure shows the relationship between the position of a hotel and the probability of it being clicked (left panel) and being booked 
(right panel). Each dot corresponds to a position with unfilled dots referring to the training data and filled dots referring to the testing data. In 
the right panel, the booking probability for the training and testing data are on separate axes (left and right axes, respectively) as the testing data 
oversamples searches that conclude in booking.
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Chapman and Staelin 1982, Bradlow and Fader 2001), 
is convenient in that it allows us to write the likelihood 
in a way that does not rely heavily on computationally 
costly simulation methods.25 Specifically, we do not 
need to numerically integrate over the idiosyncratic 
shocks (εU

i1,εU
i2,εpost

i1 ,εpost
i2 ) although we do have to do so 

for (εpre
i1 ,εpre

i2 ).
Similarly, for sequence B, there are three possible 

orderings:

si2 ≥ si1 ≥ ui1 ≥ ui2, ui0

ui1 ≥ si2 ≥ si1 ≥ ui2, ui0

si2 ≥ ui1 ≥ si1 ≥ ui2, ui0 :

We can write the probability of each of these orderings 
using the exploded logit formula as in (10); the sum 
across the three orderings then gives us the outcome 
probability associated with sequence B. Next, sum
ming the outcome probabilities associated with the 
two sequences and integrating over (εpre

i1 ,εpre
i2 ), we 

obtain the likelihood of the observed outcome for con
sumer i. A similar logic applies to more complicated 
outcomes involving more than two hotels, and thus, 
we are able to write the probability of the data in 
closed form.

Finally, note that the data only covers consumers 
who clicked on at least one hotel. To account for this 
sample selection, we divide the likelihood by the prob
ability of clicking on at least one hotel (which again can 
be written in closed form using the exploded logit for
mula). This is the (conditional) likelihood that we maxi
mize. More formally, the log-likelihood is given by

ℓ(data;θ) �
X

t
log

P
ordt

R
P(ordt; xt,θ)dFεpre

P(click at least one hotel; xt,θ)

� �

,

(11) 

where xt � (x1t, : : : , xJt), ordt indexes the different possi
ble orderings of search and utility indices for impres
sion t, Fεpre denotes the distribution of (εpre

1 , : : : ,εpre
J ), and 

P(ordt; xt,θ) denotes the probability of ordering ordt 
based on the exploded logit formula (e.g., the expres
sion in (10)).

We now provide some intuition for the type of varia
tion in the data that allows us to identify the model. 
The correlation between hotel characteristics and the 
probability that hotels are clicked identifies the para
meters in the search indices, including the position 
effects f (rj). Similarly, the correlation between hotel 
characteristics and the probability that hotels are cho
sen, conditional on being clicked on, identifies the para
meters in the utility indices. Notice that it is necessary 
to have a model of search in order to consistently 

estimate the choice model because the options in the 
consumers’ consideration sets are endogenously deter
mined, and the idiosyncratic errors of options in the 
consideration set are generally not iid extreme value. In 
other words, simply estimating a logit model on the 
observed consideration sets is likely to lead to biased 
results.

4.3. Results
We fit our double index model to the training data set by 
maximum likelihood. Table 5 presents the results. The 
first two columns of the table present coefficients and 
standard errors for the search index, whereas the last 
two columns present coefficients and standard errors for 
the utility index. First, notice that, as expected, the rank 
position coefficients in the search index tend to decrease 
with position (a striking exception to this pattern is posi
tion 11; this is consistent with the fact that Expedia 
places “opaque offers,” that is, offers in which the con
sumer does not know the name of the hotel before mak
ing a purchase, in this position, as well as in position 5— 
see Ursu (2018) for more on this point). All other coeffi
cient estimates seem reasonable. For example, price coef
ficients are negative in both the search and the utility 
indices, which suggests that higher prices not only 
reduce the probability of booking conditional on search
ing, but also deters customers from searching in the first 
place. Similarly, higher review scores positively impact 
both search and booking.

Table 5. Maximum Likelihood Estimates of the Model

Search index Utility index

Coefficient
Standard 

error Coefficient
Standard 

error

Position 1 1.34 0.06
Position 2 0.97 0.06
Position 3 0.73 0.06
Position 4 0.58 0.07
Position 5 0.40 0.38
Position 6 0.41 0.06
Position 7 0.49 0.06
Position 8 0.25 0.07
Position 9 0.29 0.07
Position 10 0.20 0.07
Position 11 �1.76 6.64
Position 12 0.19 0.08
Star rating 0.29 0.02 0.12 0.04
Review score 0.09 0.01 0.16 0.04
Chain 0.09 0.04 0.48 0.10
Location score 0.12 0.02 0.02 0.03
Price ($100) �0.33 0.03 �0.44 0.05
Promotion 0.31 0.04 0.20 0.09

Notes. The table shows the estimates of our model. The first two 
columns report the coefficients and standard errors for the search index 
parameters, whereas the last two refer to the utility index parameters. 
Hotel fixed effects are included in both the search and the utility index 
but are not reported. Standard errors are bootstrapped.
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4.4. Model Fit
Figure 5 shows the average odds of clicking on a hotel 
for different positions in the training and testing sam
ples. We can see that the model does a good job at 
matching the patterns in the data, especially for the first 
few positions. The model tends to overestimate the 
odds of search for positions 7–10 in the testing data. 
Intuitively, in the estimation data—which features ran
dom rankings—the hotels in these positions are clicked 
on fairly often. In contrast, when Expedia uses its pro
prietary ranking, consumers do not click on those posi
tions as much because it’s more likely that they will 
find a good option at the top of the page and decide to 
stop searching. As shown in Figure 5, the model cap
tures this difference to a certain extent—the solid bars 
for positions 7–10 are lower in panel (b) than in panel 
(a)—but not quite to the same degree as in the data.

4.5. Counterfactual Analysis
Given the estimated model, we perform a range of coun
terfactual exercises to compare our proposed algorithm 
to competing algorithms. Specifically, we draw 1,000 
customers (i.e., choice sets) at random from the testing 
data. For each customer, we use the model and the esti
mated search and utility index parameters to compute 
the expected consumer welfare, number of searches, 
and revenue under four rankings.26 The four rankings 
are (i) “OPT3G-CS,” our approximately optimal algo
rithm for maximizing consumer surplus with an exhaus
tive search over the top three positions and a greedy 
algorithm for rest of the positions; (ii) “OPT3G-Rev,” 
our approximately optimal algorithm for maximizing 
revenue; (iii) “utility,” the algorithm that simply ranks 
goods in descending order of their utility indices; and 
finally (iv) the Expedia ranking.

Table 6 shows the average changes in each of these 
metrics for the OPT3G-CS, OPT3G-Rev, and utility 

rankings relative to the Expedia algorithm. OPT3G-CS 
yields an average gain in consumer surplus of more 
than $1.20 per customer relative to Expedia. Remem
ber that this is an average over all consumers, includ
ing consumers who do not even search, because our 
model allows for nonsearch as an option. The simu
lated conversion rate over this population is around 
13%, implying a gain in consumer surplus for consu
mers who purchase of around $10 (similarly, OPT3G- 
Rev delivers more than $4.5 per purchase in additional 
revenue).

One might wonder whether achieving this higher 
surplus requires more search on the part of consumers 
as, in principle, higher search costs could offset the 
gains from finding a better match. We find that, on 
average, consumers engage in only 0.0048 additional 
searches under OPT3G-CS relative to Expedia. Whereas 
our model does not provide an estimate of search costs, 
this very small difference suggests that the additional 
search costs implied by our algorithm are negligible rel
ative to the utility gains.27 Specifically, the results imply 
that accounting for search costs would reverse our wel
fare numbers—that is, make the change in surplus asso
ciated with OPT3G-CS (relative to Expedia) negative— 
only if the per-click search cost were greater than 
$1:205=0:0048 � $251, which is unrealistic. We also note 
that the magnitudes of the consumer welfare numbers 
should be interpreted with caution because, in the 
Expedia data set, impressions leading to a transaction 
were oversampled though it is unclear whether this is 

Figure 5. (Color online) Model Fit 

Notes. (a) In sample. (b) Out of sample. This figure shows the probability of clicking for positions 1–10 relative to the probability for position 1. Hashed 
bars represent the data and solid bars represent the model predictions. Panel (a) refers to the training data, whereas panel (b) refers to the testing data.

Table 6. Average Changes Relative to the Expedia Ranking

OPT3G-CS OPT3G-Rev Utility

∆ Consumer surplus ($) 1.2050 �0.3826 0.5937
∆ Search count 0.0048 �0.0009 0.0038
∆ Revenue ($) 0.0843 0.5575 �0.1520
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only true of the testing data (which has a 94% purchase 
rate versus 13% in the training data) or both. Still, the 
comparison is informative about the relative perfor
mances of the different ranking algorithms.

Next, Figure 6 shows that there is a trade-off between 
revenue and consumer surplus. Among the four algo
rithms, OPT3G-CS sacrifices some revenue in order to 
maximize expected consumer surplus, whereas OPT3G- 
Rev achieves higher average revenues at the cost of 
much lower consumer surplus. Notice, however, that 
OPT3G-CS dominates the Expedia and utility rankings 
in terms of both consumer surplus and revenue. In this 
sense, the Expedia and utility rankings are within the 
Pareto frontier.28

Going beyond averages, Figure 7 shows the entire 
distribution (across impressions) of consumer surplus 
and revenue for the OPT3G-CS, OPT3G-Rev, and util
ity algorithms relative to the Expedia ranking. One can 
see that, whereas there is meaningful heterogeneity 
across impressions, the results for the averages broadly 
continue to hold when we look at the full distributions 
of customers.

In order to shed further light on how the algorithms 
perform for any given customer, Table 7 reports the 
fraction of customers for whom each of the four algo
rithms maximizes expected surplus (relative to the 
remaining three). As expected, OPT3G-CS maximizes 
consumer surplus for the vast majority of choice sets. In 
comparison, the Expedia and utility rankings are opti
mal only for up to 10% of customers each. OPT3G-Rev 
comes in last, which is not surprising because it targets 
a different objective function.

Note that it is to be expected that OPT3G-CS does 
not always maximize consumer surplus because OPT- 
K is an approximately optimal algorithm for our choice 
of K� 3 (which is smaller than the number of hotels 
available for ranking in any given impression). As 
such, it is possible that other algorithms would some
times dominate it. This being said, the fact that OPT3G- 
CS still maximizes consumer surplus in more than 
three quarters of choice sets is reassuring and suggests 
that we are not too far from the optimal algorithm.

The results so far show that our OPT3G algorithms 
achieve desirable outcomes relative to two competing 

Figure 6. (Color online) Trade-off Between Consumer Sur
plus and Revenue Maximization 

Note. The figure shows the relationship between the average con
sumer surplus and the average revenue for the OPT3G-CS, OPT3G- 
Rev, and utility algorithms relative to the Expedia algorithm.

Figure 7. (Color online) Changes in Consumer Surplus, Num
ber of Searches, and Revenue Relative to the Expedia Ranking 

Notes. The figure compares the OPT3G-CS, OPT3G-Rev, and utility 
algorithms to that used by Expedia. For each of them, the boxplots on 
the left show the distribution of changes in consumer surplus, and 
the boxplots on the right show the distribution of changes in reven
ues. Each box marks the 25th, 50th, and 75th percentiles, and the dot
ted lines indicate where approximately 95% of each distribution lies.

Table 7. Breakdown of Customers by Which Algorithm Maximizes Expected 
Consumer Surplus

OPT3G-CS OPT3G-Rev Utility Expedia

Percentage of customers 79.90 2.00 10.70 7.70

Note. For each algorithm, the table reports the fraction of customers in the testing data for 
whom the algorithm yields a higher consumer surplus than the remaining three.
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rankings, the Expedia and utility rankings. However, 
they do not say anything about the performance of 
OPT3G in comparison with any of the (many) other 
possible algorithms. In order to shed some light on this, 
we perform the following exercise. For a given impression 
in the testing data, we draw 1,000 rankings at random and 
compute the corresponding consumer surplus and reve
nue. We then compare the distribution of surplus and 
revenue across the random rankings with the perfor
mance achieved by our OPTK algorithms. We repeat this 
exercise for 1,000 randomly drawn impressions and 
report averages across impressions in Table 8. The results 
show that OPT3G-CS dominates all of the random rank
ings, on average, suggesting that it is close to the best pos
sible ranking. On the other hand, OPT3G-Rev—which 
improves over Expedia by $0.56, on average—tends to be 
slightly outperformed by the best random ranking (which 
improves over Expedia by $0.61), but its performance is 
substantially better than the median random ranking, 
which reduces revenue by $0.38 relative to Expedia. Thus, 
OPT3G-Rev appears to be close to the frontier as well.

5. Conclusion
Engagement with the virtual world seems likely to 
increase over time. How and to what platforms choose 
to direct consumer attention is a key component of the 
online world, shaping the choices that consumers make. 
The model presented here offers one way of formalizing 
this relationship between platforms and consumers, pos
iting that platforms can affect a search index that deter
mines what consumers choose to view though it cannot 
directly affect the consumption utility from content. 
Using this model, we can show that, when a platform 
wants to optimize consumer surplus, it should aid 
search discovery by promoting products that are better 
than the customer would have believed based on the 
information available presearch (i.e., by surfacing pro
ducts that would have otherwise been overlooked).

Whereas we base our model on the canonical 
sequential search protocol, several other search strate
gies share the same structure featuring two indices per 
good. Generalizing beyond Weitzman search would 
be an interesting avenue for future research. This may 
require more complicated expressions for the search 

and utility indices—possibly leading to nonparametric 
specifications—and it may also lead to a strategy for 
testing which search protocol consumers follow.

A second direction would be to incorporate sponsored 
ads into the model. The current framework focuses on 
organic rankings in a platform without sponsored ads. 
However, firms selling high-potential products may be 
willing to pay for better ranks, generating an additional 
source of revenue that the platform should take into con
sideration when optimizing its organic rankings.

Finally, one might wonder whether the tension be
tween maximizing revenues and optimizing consumer 
surplus is a consequence of the fact that the model is 
static. In a dynamic model in which Expedia takes into 
account the effect of its rankings not just on present, but 
also on future outcomes, it’s possible that the two objec
tives might be more aligned. For instance, if consumer 
surplus is a good predictor of the likelihood of customer 
retention, then maximizing consumer surplus may also 
be optimal from a revenue perspective in the long run. 
Because the data does not track consumers over time, 
we are unable to explore this question here, but it would 
be an interesting avenue for future research.
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Endnotes
1 De los Santos and Koulayev (2017) propose a utility-based ranking 
that maximizes click-through rates.
2 In our framework, the act of searching a product conflates two distinct 
actions: scrolling to the product in the results page and clicking on it. Gre
minger (2022a) develops a model that distinguishes these two steps, and 
Greminger (2022b) estimates it on the same data as the present paper.
3 Papers that model consumers as searching over their match value 
include Kim et al. (2010) and Ursu (2018). A paper that, like ours, 
allows for vertical dimensions of quality to be revealed with search is 
Jiang et al. (2021).
4 Using a different model, Derakhshan et al. (2022) find a similar result.
5 Because the marginal cost of making a sale are essentially zero for 
many platforms (sellers are responsible for the physical delivery of 
the good), revenues often coincide with profits, and we use the two 
interchangeably.

Table 8. Comparison with Random Rankings

Random

OPT3GMinimum Median Maximum

∆ Consumer surplus �2.91 �0.87 1.20 1.21
∆ Revenue �1.32 �0.38 0.61 0.56

Notes. For any given impression, we compare the changes (relative to 
Expedia) in consumer surplus and revenue achieved by OPT3G-CS 
and OPT3G-Rev, respectively, with those achieved by 1,000 random 
rankings. The table reports averages across 1,000 randomly selected 
impressions.
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6 The revenue the platform earns from selling each product depends 
on its individual agreements with each seller but is typically a fixed 
percentage of the sale price.
7 This is consistent with the insights in Ursu and Dzyabura (2020) 
although the mechanism through which this plays out is different. 
In Ursu and Dzyabura (2020), the retailer/platform may have an 
incentive to promote products with lower utility because this can 
lead consumers to search more products and, thus, be more likely 
to purchase one of them. In contrast, in our case, even for fixed 
search intensity, the platform may prefer to promote products that 
have lower utility as long as they yield higher revenues. Indeed, in 
our application, we find that there is a trade-off between consumer 
surplus and revenue even though the two algorithms lead to essen
tially the same number of searches on average.
8 Placing products with low search indices and high utilities (i.e., high 
potential) in top positions may also have the unfortunate effect of dimin
ishing consumer trust in the search algorithm if the consumers never 
sample them. Good recommendations are those that are followed.
9 Whereas we do not observe the exact order of search in our data, 
we see on which products a given consumer searched. In more than 
80% of impressions, the consumer searched a product A but not 
some of the products ranked higher than A, which implies that they 
did not search in the order in which the products were ranked.
10 The distinction between εpre

ij and εpost
ij corresponds to that between 

presearch and postsearch shocks in Ursu et al. (2022).
11 For a relaxation of this assumption, see Bronnenberg et al. (2016) 
and Hodgson and Lewis (2020).
12 Note that we maintain the restriction that ξS

j and f (rj) are addi
tively separable; that is, we rule out interactions between rankings 
and additional factors, such as the variance of ξ̃U

j , in driving the res
ervation value.
13 However, if εi, j has different variances across goods, this induces 
differences in search indices above and beyond f (rj). These differ
ences are captured by ξS

j , which then are different from ξU
j . For 

instance, if goods j and k have the same ξU but the variance of εi, j is 
larger than that of εi, k (implying a bigger upside to searching j), 
then we have ξS

j ≥ ξ
S
k , all else equal. This is allowed in the model 

because we estimate ξS and ξU via two separate sets of fixed effects.
14 We believe that the algorithms we develop extend to the case in 
which the platform maximizes a convex combination of consumer 
surplus and revenue, but we have not formally analyzed this.
15 This expression for consumer surplus arises in logit models 
whenever there is a distinction between anticipated and realized 
utility (Allcott 2013, Train 2015).
16 Choi et al. (2018) derive a formula for consumer surplus that 
accounts for search costs. Note, however, that their definition of 
expected surplus differs from ours. Choi et al. (2018) consider 
expected surplus from the perspective of a consumer who has not 
searched yet; that is, the expectation is taken over the realizations of 
the components of utility that are revealed upon search (which 
could include xj and ξU

j as well as εpost
ij in our model). In contrast, 

we take the perspective of the researcher/platform and focus on the 
average surplus across consumers, with which the average is taken 
over realizations of the consumer-specific shocks (εS

i, j,ε
pre
i, j ,εpost

ij ). 
These are the only terms in the model that the researcher cannot pin 
down after estimating the model, and it is, thus, intuitive to take an 
average over them when defining the platform problem.
17 Note that the sign of (7) is the same as the sign of the term in 
parentheses because qij and f ′(rj) are both positive.
18 All possible assignments of the J products to the first k positions 
take J!=(J� k)! evaluations, and because the algorithm may assign 
up to position K, we must sum over all assignments that have k�1 
to k�K.

19 To calculate consumer surplus or platform revenues under ran
dom assignment, we enumerate all possible assignments for the 
remaining J�K positions and average the consumer surplus or plat
form revenues associated with each assignment.
20 Assignment of all J products requires (J�K+ 1) + (J�K)+⋯ +2 
� (J�K)(J�K+ 3)=2 evaluations.
21 An impression is a ranked list of hotels, together with their attri
butes, that the platform returns in response to a user query.
22 For the descriptive evidence, we focus on the top 50 most often 
displayed hotels in the training data.
23 We plot the probability of booking on different axes here because 
the testing data oversamples searches that terminate in booking so 
that plotting them on the same axes may be misleading.
24 Ursu (2018) also maintains exogeneity of hotel characteristics.
25 Jiang et al. (2021) propose a Geweke–Hajivassiliou–Keane–type esti
mator that also simplifies the computation of the likelihood for the 
Weitzman model. One difference is that our estimation approach is 
somewhat agnostic as to which components of utility consumers dis
cover upon search as discussed in Section 2.
26 We approximate the expectation by Monte Carlo simulation: for 
each consumer, we draw 10,000 vectors of the idiosyncratic shocks to 
the search and utility indices for all products, determine which pro
ducts they search and purchase and their consumer surplus, and 
then output the average across all draws.
27 In contexts in which this is not the case—for example, in which 
the proposed consumer surplus–optimizing algorithm yields sub
stantially more searches—one could use one of the microfounda
tions of the model and the estimated parameters to back out search 
costs (e.g., from (4)) and then account for the latter in the welfare 
calculation.
28 Consistent with this, Greminger (2022a) uses the same data and 
finds that it is possible to simultaneously increase both revenues 
and consumer surplus relative to the status quo.
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