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We present a new class of methods for identification and inference in dynamic models with serially
correlated unobservables, which typically imply that state variables are econometrically endogenous. In the
context of Industrial Organization, these state variables often reflect econometrically endogenous market
structure. We propose the use of Generalized Instrument Variables methods to identify those dynamic
policy functions that are consistent with instrumental variable (IV) restrictions. Extending popular “two-
step” methods, these policy functions then identify a set of structural parameters that are consistent with
the dynamic model, the IV restrictions and the data. We provide computed illustrations to both single-agent
and oligopoly examples. We also present a simple empirical analysis that, among other things, supports
the counterfactual study of an environmental policy entailing an increase in sunk costs.
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1. INTRODUCTION

We propose an instrumental variable (IV) approach to identification and inference for infinite-
horizon dynamic models in the presence of serially correlated unobservables. Such serial
correlation typically leads to dynamic state variables that are econometrically endogenous, which
creates problems for identification and inference. As a result, much of the literature to date
either assumes away serial correlation in the unobservables or else deals with such correlation in
particularly simple fashions.

We mostly focus on applications to dynamic models of Industrial Organization (IO). These
models often feature state variables that measure various kinds of “market structure”, such as
the number of firms, the number of retail outlets, the vector of current productivity levels of
firms, and so forth. As an example, consider a simple model of entry and exit where profits
depend on the number of firms in the market, x. Standard empirical approaches assume that any

The editor in charge of this paper was Francesca Molinari.
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variables affecting firms’ profits and not captured by the data—e.g. unobserved demand or supply
shocks—are independent over time. This implies that “market structure” x is independent of the
contemporaneous unobservables and thus the effect of x on, say, firm entry can be directly observed
in the data. In contrast, when the unobservables are persistent over time, markets with large x are
likely to be more systematically profitable in terms of unobservables. Thus, the observed entry
probabilities reflect the correlation between unobservables and x, and we cannot directly observe
the “causal effect” of x on entry. This is a classic endogeneity problem.

A natural and economically meaningful solution to this familiar IO problem of endogenous
market structure is to use IV methods. More broadly, this article is a part of the research agenda
that relates the formal identification of IO models to classic IV intuition, as in standard equilibrium
models of supply and demand. The goal is to address a persistent critique of IO models that claims
they are typically not well identified. Specific examples of this agenda include Cournot-style
models, as in Bresnahan (1989), differentiated products demand and supply market equilibrium,
asin Berry and Haile (2014), cross-sectional market structure (“‘static entry” models), as in Tamer
(2003), and auction cost heterogeneity, as in Somaini (2015).!

1.1.  Idea of the article

Our article builds on the intuition of classic two-step methods, following on Hotz and Miller
(1993) (henceforth, HM), that distinguish between the identification of (i) the structural
parameters of an underlying dynamic model and (ii) the policy function that results from the
solution of that dynamic model evaluated at the true value of the structural parameters. It is this
policy function that (according to the model) generates the data.

The task of identification and inference is made much easier by the assumption that
unobservable shocks are distributed independently over time. This is made clear in Rust (1987)
and exploited in the HM ““conditional choice probability”” or “CCP” approach. In the related IO
literature, the shocks are then typically assumed to also be private information.> Under these
assumptions, the dynamic policy function is often point-identified “directly from the data.” For
instance, in the case of dynamic discrete choice models, estimating the policy boils down to
estimation of conditional probabilities. The structural parameters are then identified as those that
are consistent with the observed policy function.

However, the simplicity of these methods depends critically on the econometric exogeneity
of dynamic states. Once unobservables are allowed to be serially correlated, the dynamic states
become econometrically endogenous. This is because the dynamic states reflect past values of
the unobservables which, due to serial correlation, are typically not independent of the current
unobservable entering the policy function. The econometric endogeneity problem here is classic
in its form: the “right-hand side” state variables in the dynamic policy function are correlated
with the unobservables that enter the same function.

In order to tackle the endogeneity of the dynamic states, we rely on IVs. These instruments
have the classic features that they (1) do not directly enter today’s policy decision, (2) are assumed
to be exogenous (independent of the unobservables), and yet (3) are correlated with the current
state, likely because they affected past policy decisions that are correlated with present states. In a

1. In addition, as in much of the auction literature, there are many formal 10 identification arguments that do not
so clearly involve IVs.

2. See Pesendorfer and Schmidt-Dengler (2008), Bajari, Benkard and Levin (2007), and
Pakes, Ostrovsky and Berry (2007) for a discussion of HM style methods, with pure i.i.d. private information
shocks, extended to a dynamic oligopoly context with possibly multiple equilibria. An early review of this approach is
in Ackerberg, Benkard, Berry and Pakes (2007).
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dynamic entry model, an example would be past market size or past regulatory environments that
influenced past decisions to enter a market. In the presence of sunk costs, these past decisions will
continue to be correlated with current market structure, even if current entry decisions are only
driven by current market size and current regulations. We discuss further examples of possible
IVs after we have formally defined key features of the model.

Traditional IV and panel data methods face a difficult problem in our context: the policy
function is derived from the “structural” dynamic model and this typically implies that the
policy function is not additively separable in the serially correlated unobservable(s). The non-
separability of the policy function in unobservables creates difficulties for both identification
and inference. Luckily, there is a large recent literature on the non-parametric identification
of functions with nonseparable unobservables and econometrically endogenous right-hand
side variables, sometimes mixed with a classic panel data structure. In the easiest possible
examples for us, the dynamic policy function will be point-identified even in the presence
of serial correlation, but more general cases may lead only to set identification. To consider
more general cases, we leverage an existing large literature on identification and inference in
partially identified models, including Manski and Tamer (2002), Tamer (2003), Manski (2003),
Chernozhukov, Hong and Tamer (2007), Berry and Tamer (2007), Ciliberto and Tamer (2009),
Beresteanu, Molinari and Molchanov (2011), Galichon and Henry (2011), Chesher (2010), and
Andrews and Shi (2013).

One article that sums up and extends an IV style literature on this topic is Chesher and Rosen
(2017) (henceforth, CR), who discuss a class of “Generalized Instrumental Variable” (henceforth,
GIV) methods. In addition to emphasizing an appropriate IV framework for the identification of a
very broad class of dynamic policy functions, CR closely build on the work of Galichon and Henry
(2011) and Beresteanu et al. (2011) to characterize the sharp identified set.® This characterization
will help us build intuition about how instruments serve to (set) identify policy functions.

The identifying power of these IV methods is increased by the presence of multiple periods of
data. In particular, we note that even in the absence of any IVs, non-separable policy functions can
be usefully restricted purely from the presence of multiple periods of data, as in the nonseparable
error, non-parametric panel data papers of Altonji and Matzkin (2005) and Athey and Imbens
(2006).*

We illustrate our approach in a simple single-agent entry and exit model. This minimal example
allows us to build intuition about the sources of identification as well as to explore how the number
of time periods, the presence of exogenous covariates and the strength of the instruments affect
the identified set for the structural parameters. We then apply the method to data from the US
ready-mix concrete industry and consider a counterfactual policy that increases the magnitude
of the sunk costs of entry into the market. When we compare our approach to three different
methods that assume away serial correlation in the unobservables, we find that the latter results
are significantly different than ours in one of our model specifications. Moreover, the sign of the
bias varies across the three methods. Two approaches tend to over-predict the responses to the
policy in terms of both the number of firms and the fraction of new entrants. This stems from the
fact that, in the counterfactual, the unobservables exhibit too much volatility over time when serial
correlation is ruled out. On the other hand, a third approach estimates a very large sunk cost (as a
way to match the persistence in the data without appealing to serially correlated unobservables)

3. These papers in turn build on advances in random set theory (Artstein, 1983). See the comprehensive treatment
in Molchanov and Molinari (2018), as well as the discussions in Chesher and Rosen (2020) and Molinari (2020).

4. These papers do not explicitly consider the fully dynamic problems that we consider here but instead focus on
non-parametric analogues of non-dynamic panel data-style arguments.
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and thus predicts no response to the policy change. The difficulty in a priori signing the bias from
standard, more restrictive methods further motivates our contribution.

1.2.  Some related papers

The literature on the identification and estimation of dynamic problems is immense, and we can
only highlight a set of related literatures here.

We are obviously not the first authors to consider the issue of serially correlated unobservables
in dynamic models, including dynamic games. Outside of the two-step literature following on
CCP methods, there is an important set of papers emphasizing computational approaches to
estimation that allow for some form of persistent unobservables, sometimes in the form of a
limited number of “discrete types” of agents. A classic single-agent example is Keane and Wolpin
(1997). A classic oligopoly example is the full-solution approach of Ericson and Pakes (1995)
and Pakes and McGuire (2001), who emphasize that serially correlated unobservables are an
important feature of realistic dynamic models in 10. These computationally oriented papers do
not typically discuss formal identification.

Work on the identification of mixture models, as in Kasahara and Shimotsu (2009), provides
some formal results on identification of discrete dynamic policy functions with persistent
unobservables. This work again emphasizes limited forms of discrete heterogeneity. In
Berry and Compiani (2020a), we show that our framework includes the class of models they
consider as a special case. A key restriction in Kasahara and Shimotsu (2009) is that the variation
in unobservables is in some well-defined sense lower-dimensional than the variation in the
observed data. In particular, the degree of point-identified heterogeneity is limited by the time-
series dimension of the data. As a complementary result, our set-identification approach is
applicable to settings with as few as two time periods irrespective of the dimension of the
unobservable. Of course, if the data exhibit too little variation, our identified sets may be so
large as to be of little use. In our empirical application, we obtain informative results with fewer
than 500 cross-sectional observations. Hu and Shum (2012),3 obtain point-identification results
in a single-agent model featuring possibly continuous, time-varying scalar unobservables. As in
Kasahara and Shimotsu (2009), a key source of identification is that the degree of persistence in
the unobservables is assumed to be smaller relative to the variation in the data, together with a
completeness condition in the case where the unobservables are continuous. Our approach does
not require either, but in general yields partial identification and makes explicit use of instruments.

On the estimation side, Arcidiacono and Miller (2011) provide maximum likelihood
computational methods for the structural parameters of dynamic models with discrete persistent
heterogeneity. Norets (2009) proposes a Bayesian estimation method for dynamic discrete choice
models with serially correlated unobservables. Additional full-solution approaches allowing
for serial correlation include Blevins (2016) and Reich (2018). Neither discusses identification
formally.

Our article is also related to the literature on dynamic panel data models that are not
derived from explicit dynamic optimization (e.g. Altonji and Matzkin, 2005; Athey and Imbens,
2006) and to the large literature on distinguishing between state dependence and unobserved
heterogeneity (see e.g. Heckman and Singer, 1984; Israel, 2005; Dubé, Hitsch and Rossi, 2010;
Torgovitsky, 2019). Similar to these papers, we face the challenge of disentangling the roles
of past actions and persistent unobservables in driving current outcomes. Our IV intuition
is very much in line with this literature on dynamic panels with state dependence. For

5. See also Hu, Shum, Tan and Xiao (2015).
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example, Israel (2005) argues for the usefulness of past exogenous shocks that shift the
current state but do not affect today’s decision conditional on the current state. More recently,
Heckman, Humphries and Veramendi (2016) study identification and estimation of dynamic
treatment effects allowing for time-invariant unobserved heterogeneity.

In the dynamic panel context, Honoré and Tamer (2006) make a set of observations that are
closely related to our motivations and our work. First, they note that the initial conditions problem
in a dynamic setting leads to an “incomplete model” that may not be point identified. This calls
into question approaches like Heckman and Singer (1984) that attempt to close the model with a
pure functional form assumption. However, Honoré and Tamer (2006) note that the incomplete
model still imposes bounds on the parameters that, in practice, may be quite informative. An
implication is that it may be better to use these bounds instead of “completing” the model via
an ad hoc assumption on initial conditions. The Honoré and Tamer approach has some strong
similarities to our approach that places bounds on a dynamic policy function, but they do not
explicitly discuss I'Vs and they do not consider models of optimal dynamic behaviour.

Even without serially correlated unobservables, there are typically no formal point-
identification results for models with continuous actions,® which is one reason why Bajari e al.
(2007) (“BBL”) relies on set-identified inequality methods to recover the structural profit
parameters, once given a “first-step” identified policy function. We propose much simpler second
step methods, which aids in translating the policy functions (set) identified in our GIV first step
into second-step profit parameters.

A recent paper by Kalouptsidi, Scott and Souza-Rodrigues (2021a) shares our I'V intuition and
is in many ways closest to our spirit. They show that in a class of dynamic discrete choice models
with serially correlated market-level unobservables, one can obtain Euler equations that point-
identify some firm-specific profit parameters. This approach leads to computationally light linear
IV estimators that are robust to endogeneity problems caused by the market-level unobservables.
However, it does not address identification of the joint distribution of the unobservables over time
and thus cannot be used to perform counterfactuals requiring that distribution as an input. The
paper provides some interesting examples of IV potential applications with serially correlated
market-level states, including durable goods demand, land use, and dynamic labour supply. They
discuss possible instruments in these settings. Their examples and instruments could be applicable
to our methods as well. Blending our method with theirs might be a fruitful direction for applied
work.

The rest of this article is organized as follows. Section 2 introduces the general notation
and model. Section 3 discusses identification for single-agent problems. Section 4 illustrates the
approach via numerical examples. Section 5 extends the analysis to the oligopoly setting. Section
6 contains the empirical application and Section 7 concludes.

2. MODEL

In this section, we describe the formal model. After introducing variables and notation, we focus on
the single-agent case and present a simple monopoly entry example, which we will use throughout
the rest of the article as an illustration.

6. Identification in the case of no serial correlation and discrete actions is considered in Magnac and Thesmar
(2002) and related papers.
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2.1.  Variables and notation

We consider a model that generates data on a large set of markets, with one or more agents’
per market, and a fixed (perhaps small) number of time periods denoted by r=1,...,T. We
may additionally have access to some subset of variables for prior periods, ¢ < 1. In the general
oligopoly model, markets are indexed by i and firms within markets are indexed by j. We do not
model cross-market interactions. Our simpler examples will involve a single firm per market.

In each market in each time period, each firm takes an action (or actions) denoted by a;j;.
These actions contribute over time to the firm’s observed current state(s), denoted by x;;r. The
set of feasible actions for a firm with state x;; is denoted A(x;;;). As one example, in an entry
model there might be a scalar action ajj, equal to 1 or 0, that indicates the decision to operate in
the market in period 7+ 1. A scalar state x;;; might then be whether firm j operates in market i in
period .

There are also observed exogenous states, w;j, that evolve separately from the firms’ actions.
Some or all of the exogenous states may be shared across firms. In some cases, we may observe
some partial information on exogenous variables from before the beginning of our full panel
dataset. We denote these variables, which will later prove useful as instruments, by r;.

In addition, there are unobserved (to us) state(s) u;j; that also evolve exogenously from the
actions of firms. For example, in an entry model, u;;; may represent the component of fixed costs
not captured by the data. Within a market, the unobservables may be correlated both across time
and firms. The u;j; are the only variables that the firms observe but we do not. In the oligopoly
context, we treat the serially correlated component of u;;; as commonly observed by all firms.
In some cases, it is also useful to model an independent (over time and firms) component that is
private information to the firm.?

Suppose that there are a maximum of J firms within each market. We define

ajr =(a;11,a4, - .-, AiJt), (D

and we define the market-time vectors x;;, wj;, and u;; in a similar fashion. As further notation, we
let across-time, within-market vectors of variables (and their respective supports) be denoted by
a;=(aj1, ...,a,-T)eAT, x;i =(x1, ...,xiT)eXT, w; =(wj1, ...,WiT)GWT, and ui=Uj1,....,uiT) €
uT.
The probability that the vector u; of unobservables (across time and firms within market) lies
in the set S c U7 is denoted by
D(S;6u), (2)

where the vector 6, parameterizes the distribution of the vector of market unobservables across
time and firms. The parameter 6, will often, inter alia, control the degree of serial correlation
in the unobservables. The single-period profit of firm j in market i in period ¢ is given by the
function

70 (Qit, Xig, Wig, Wir; O ) - (3)

The subscript j on the single-period profit function indicates the natural property that firm j’s
profits depend differently on its own elements of (ajr, X;jr, Wijr, ujjr) as opposed to its rivals’. The
unknown parameters of the single period profit function are 6;. The full vector of structural

7. Since many IO dynamic models involve firms making decisions over time, we use the words “firms” and
“agents” interchangeably throughout the article.

8. The distinction between the full information serially correlated unobservable and the private independent
unobservable is similar to the distinction between the variables v! and v? in Pakes, Porter, Ho and Ishii (2015).
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TABLE 1
Some single agent 10 examples
State, x;; Action, a;s Alxir) Transition
Capital Investment R* Xirg 1 =X +aig
Out/in Entry/exit {0,1} Xit41 =it
Retail No. of stores I+ Xit+1=dir
Quality R&D R Xi+1 ~f (Xir, air)

parameters, 6, then includes the unknown parameters of the single-period profit function and of
the distribution of unobservables: 8 = (6, 6,).°

2.2.  Single firm per market

We begin with the single-agent case, returning to dynamic oligopoly in Section 5. In this special
case, we treat each firm (agent) as operating in its own “market”’, and so we drop the j firm
subscripts in (ajr, Xijt, Wijt Uijt ), leaving (for example) a;; as the action of the firm in market i at
time ¢. In the single-firm case, we will shorthand the phrase “firm in market i”” as “firm i.”

As is classic in much of the literature following on Rust (1987), we assume that the observed
endogenous states of the firm evolve according to the transition probability function

(i1 lais, Xie, Wir), 4)

where I gives the probability of each possible future state conditional on the firm’s own action
and observable states. As a special case, this could describe deterministic state transitions, where
some state occurs with a conditional probability of one. For instance, in a dynamic entry model,
the current state (whether the firm is in or out of the market) is equal to the action taken last
period. Table 1 gives some examples of actions, states and transition processes that might occur
in the IO context.

Similarly, we focus on the case where the exogenous states are first-order Markov, and let

H(Wwiry1lwir) (5)

and N

D (g1 |uir; Ou) (6)
be the transition probabilities for w;; and u;;, respectively. The first-order Markov assumptions
are not needed for the identification argument; however, relative to the fully general model, they
reduce the dimension of the state space and are thus helpful when conducting inference.'” Our
leading example here will be a model of first-order serial correlation where u;; is a scalar that
obeys uj; = pujs—1 +vis+/ 1 — p2. In the simplest case, the period ¢ innovation v;; might be assumed
to have a simple parameterized distribution. The parameter 6, then includes those parameters plus
the serial correlation parameter p.'!

9. Following standard practice in the dynamics literature, we assume that the discount factor is known throughout.
10. Our framework also allows for the case where the transition processes for x;; and w; in (4) and (5) depend on u;
(or components of it) provided that they can be identified from the data. Since we know of no empirical models featuring
this dependence, we focus on the case where the transitions do not depend on u;; throughout the article. Similarly, the
transitions for u;, could in principle depend on the observed states. None of the examples that we consider in this article
has this feature and thus we maintain the assumption in (6) for ease of notation.
11. Berry and Compiani (2020a) consider cases where the unobservable consists of both a time-invariant discrete
component and a serially uncorrelated shock in the spirit of Heckman and Singer (1984), Keane and Wolpin (1997),
Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011), and related literature.
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The firm’s dynamic problem is given by the classic Bellman equation:

V (Xie, Wiz, ujs) =
(7

2122( )(71 (@ir, Xig, Wit Uigs O ) +8Eg, [V (Xig-1, Wit 1, Uirt1) |@ie, Xig, wir, i),
Ajt Xit

where § denotes the discount factor and V the value function. Note that we assume a stationary
environment and thus let the function V be time invariant. The expected value function in this
expression is

Eg, [V (Xit1, Wit 1, ir1) @it Xi, i, iy | =

N (3)
///V(xit—i-l,wit—i-lvuit—i-l)dr(xit—t-l|ait,xit’Wit)dH(Wit+1|Wit)dq>(uit+l|uit§9u)-

Equation (8) embeds the restriction that the conditional di§tributi0n of
(Xit-+1> Wit+1, i1 |air Xig, Wi, wig) factors into (g1 1air Xie, Wi dH Wir -1 1Wie) @ (W41 i ).
This has been a standard assumption in the literature since Rust (1987). However, relative to the
existing models, we relax the assumption that u;; be independent over time, which is why we do
not drop the conditioning on the past unobservable in &D(ui,Jr] |ui; 6y).

In the single-agent case, there is a unique solution for the value function and we assume
standard conditions such that there is a unique policy function consistent with that value function.!?
We let o denote the policy function that generates our data, so that the observed actions are

ajr =0 (xjt, Wi, ujr), o €F. )

In many cases, reasonable assumptions on the single-period return function and the transition
processes imply that the policy function must obey certain qualitative restrictions, such as
monotonicity. These restrictions can then be imposed on the set of possible policy functions
F.

For the identification argument presented next, it will also be useful to define the different
(counterfactual) policy functions that would be generated by any possible parameter vector 6 =
(67,6,). In the single-firm case, these policy functions, generated by the model via the unique
solution to Bellman’s equations at different 6, are denoted by a;; = oy (X, wir, ujr). Note that oy
is generated purely by Bellman’s equation with no reference to the data.

The policy functions o and oy are connected because, according to our model, o (xj;, Wiz, Ujr) is
generated by Bellman’s equation applied at the true value of the parameters. In the argument below,
the distinction between o and oy is important because it allows us to separately ask [1] whether
a given o € F is consistent with the data and IV conditions and [2] whether such a function
is additionally consistent with some vector 6, in the sense that it matches the policy function
associated with 6 via the full dynamic model (i.e. the Bellman equation). As in Hotz and Miller
(1993), this distinction will form the basis of our two-step identification procedure.

We now introduce a minimal single-agent model that we will use as an illustration throughout
the article.

12.  For the technical conditions guaranteeing a unique policy function in the case of a continuous policy, see
Theorem 9.8 in Stokey, Lucas and Prescott (1989). Rust (1987) and many other papers provide examples of unique
policy functions in the discrete case.
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Example 1. Consider a monopolist deciding whether to be in or out of the market in each of
multiple time periods. In this example, the state is whether a firm is “Out” of or “In” the market
in the prior period, xj; €{0, 1}, and the action today is whether to be active in the market today,
air €{0,1}. We assume that exit is reversible and that there are no exogenous profit shifters w
(for now). A firm that is already in the market (xj=1) and decides to stay in (aj;=1) earns a
single-period profit equal to ™ —€;; where 7 is the deterministic part of variable profits. A firm
that is out of the market (xj; =0) and decides to enter (aj; = 1) earns the same single-period profit
minus a sunk cost y. Whenever a firm decides to be inactive (aj; =0), it earns zero profits. We
interpret €;; as a shock reflecting variation in per-period fixed costs and assume that it follows a
first-order autocorrelation process,

€ir = p€ii—1 +Viry/ 1 —p2, (10)

where vy is distributed standard normal.’> The resulting model then has three structural
parameters: 7,y, and p. The policy function that generates the data is

ajr =0 (Xj, Ujr), (11)

where u;; ~Unif (0, 1) can be normalized to be the quantile of €;;." 4 We assume that the dynamic
model generates the natural monotonicity results that o is weakly increasing in x;; and weakly
decreasing in uj;.

3. IDENTIFICATION IN THE SINGLE-AGENT MODEL

Given the model described in the previous section, we now discuss identification. Again, we
first focus on the single-agent case and refer the reader to Section 5 for the identification of
the oligopoly model. At the end of this section, we briefly discuss inference in light of these
identification results.

For purposes of identification, we assume that we observe the true distribution from which
the data is drawn and denote it by P(a;,x;,w;,r;), where again r; denotes excluded exogenous
variables. This is equivalent to seeing a T-period panel on a very large (in fact, infinite) cross-
section of firms or agents. We wish to identify (possibly set-identify) the parameters 6. When
(a;,x;,w;) are discrete and the unobservables enter profits additively, the single-period profit
function may be fully flexibly characterized by a finite number of parameters, one for each
combination of (a;, x;, w;) values. On the other hand, in the continuous case, flexibly modelling the
profit functions generally leads to infinite-dimensional parameters 8. While this is allowed by our
identification argument, the presence of an infinite-dimensional & would complicate computation
and inference, and we leave adapting the implementation of our approach to this setting for future
work. '3

The potential instruments in the model consist of the exogenous variables z; =(r;,w;). The
critical assumption that allows for our IV approach is independence of the instrument and the
unobservables: '

zi Lu;.

13. Given the parameterization of the profit function, fixing the mean and variance of v;; is without loss.

14. To see this, one can write a;; :E(x,-,,F‘l (F¢ (e,-,))), where @ is a non-parametric function and F is the cdf of
€ir. Equation (11) then follows by defining u;; =Fe (€;) and o (xir, ) =& (xir, F< 1 (+)).

15. Compiani (2019) proposes a sieve estimator for a nonparametric regression model with shape restrictions that
could be applied to the policy function (9) under point-identification.

16. While we focus on this restriction throughout the article, CR show that the GIV approach may also be applied
under weaker assumptions, such as mean or quantile independence.
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TABLE 2
Examples of possible instruments r;
State Example instruments
Capital Past investment cost
Out/in of market Past market population, past regulation
No.# of stores Distance from headquarters, interacted with time
Quality Past R&D shocks, age of firm

Note that the assumption that w; be exogenous is standard in the existing literature. In addition,
we require excluded instruments r; to deal with the endogeneity of the dynamic states x;. Table
2 gives some ideas of possible instruments r; in different contexts. As is usual with discussions
of potential instruments, the required independence assumption may be more or less appropriate
in different real-world cases.

In studying identification of the model, we follow the classic “two-step” approach. First, we
discuss the (set-)identification of the policy function and serial correlation parameters, using GIV
techniques. Given the results of the first step, we then discuss the identification of the structural
parameters of the profit function using a broad generalization of existing approaches.

3.1.  First step: identification of the policy

The broad idea is to (set-)identify the policy function from classic IVs conditions, extended to
cases where the policy function is highly nonlinear in the states. The GIV framework achieves
this, and it allows us to deal with the following complications arising in many dynamic models
of interest: (1) the incompleteness of the model, i.e. the fact that the exogenous variables do not
uniquely pin down the endogenous variables (Tamer, 2003); (2) the fact that, if the dynamic states
and actions are discrete—as in entry/exit models—the policy function is known to be generally
only partially identified in the absence of a model for the endogenous explanatory variables
(Chesher, 2010); and (3) lack of point-identification of the parameters, even in the absence of
Problems 1 and 2, e.g. due to instruments that are not strong enough.

In applications, we may have all or none of these problems. If the model and data generating
process in fact imply point-identification, then the sharp identified set will collapse to the true
parameter value. In the single-agent case, an incomplete model can follow from the presence
of unknown initial conditions, i.e. the fact that the joint distribution of (x;1,;1) is not known.!”
Traditionally, solutions to the initial conditions problem include either (1) parameterizing the
initial joint distribution of states and unobservables or (2) specifying some process for the past
history of the firm that uses the model parameters to construct that same initial joint distribution. '8
We argue that if the parameterization in method (1) is so flexible as to not impact the resulting
identified set, then we might just as well look for the sharp identified set that does not restrict the
initial distribution.

As in Tamer (2003), any given action a;; naturally leads to conditions on sets of unobservables.
In particular, following CR and using similar notation, if the sequence (a;,x;, w;) occurs, then u;

17. See Anderson and Hsiao (1981), Arellano and Bond (1991), and Blundell and Bond (1998), among others.
Honoré and Tamer (2006) emphasize how the initial conditions problem leads to partial identification in nonlinear dynamic
panel data models.

18. Collard-Wexler (2014) employs both solutions. While the results of his counterfactuals are robust, a few
parameter estimates vary substantially across the two methods, suggesting that the way in which the initial conditions
problem is addressed matters in general.
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must be in the inverse image set U (a;, xj, w;,0)={u;: o (xj;, wir, uir) =aj, Yt}. The condition
{ui eU(aj,xi,wi,0)} (12)

is then a necessary condition for the observed event (a;, x;, w;). If the model is incomplete, however,
that condition is not sufficient for the event: when the exogenous variables (w;, 4;) do not uniquely
pin down the endogenous variables (x;,a;), it can happen that (12) is satisfied but the event
(a;j,xi,w;) does not occur. This gives rise to the following characterization of the identified set
for the policy and parameters for the unobservables based on inequalities (Artstein, 1983): a pair
(0,6,) is in the identified set if and only if for all closed sets S C U7 and for all z

Pr(U(aj, xi,wi,0)C S |z) <Pr(u; €S|z;6,). (13)
which, under the assumption of independence between z; and u;, simplifies to
Pr(U(a;, xi,wi,0)C S |z) <D(S;00). (14)

In this last equation, the left-hand side is the conditional probability of the outcomes y; = (a;, x;),
which, according to o, have {u;:u; € S} as a necessary condition. For a given o and z, this is the
probability of an event whose occurrence can be observed in the data. The right-hand side is the
probability of that necessary condition with respect to the distribution of u;, which by assumption
does not depend on z. Further, given 6,, this term is known and can be computed in closed form
or via simulation.”

In the case with discrete aj, xir, wir, CR shows that to obtain the sharp identified set for 6, one
only needs to check sets S (labelled “core-determining”) that belong to a collection Q(o, 7;).20 This
collection includes the “elemental” sets, U(a;,x;, w;, o), associated with individual realizations
of the observables, as well as appropriately chosen unions of sets of that form.?! We illustrate
these sets in Example 1 below and Supplementary Appendix A.

The CR approach operates in the space of the unobservables and it builds on earlier results
that apply to the space of observables (Beresteanu et al., 2011; Galichon and Henry, 2011). For
us, the result is useful because it completely characterizes the inequality restrictions that define
the sharp identified set of policy functions. We will illustrate this in the simple monopoly entry
model of Example 1. However, the number of these restrictions can grow quite large in realistic
problems. In these cases, one may not be able to list all the CR inequalities needed to obtain
the sharp identified set. However, the CR characterization is still helpful to build intuition for
selecting which inequalities to impose. We do this in the empirical application of Section 6 and
show that, while we do not get sharp identification, the results are still informative.

When the necessary conditions (14) are actually necessary and sufficient for particular (sets
of) actions, then the associated inequalities become strict equalities. In a complete model, all
of the necessary conditions are equalities. However, as usual, this does not guarantee that the
parameters are point identified (since e.g. the instruments might not be strong enough) and so, in
the absence of a proof of point-identification, we might still want to consider set identification.

19. See Berry (1992) and Ciliberto and Tamer (2009) for other uses of simulation in models characterized by
moment conditions.

20. The notion of core-determining class was first introduced by Galichon and Henry (2006).

21. Note that in any particular example Q(o,z;) need not be “irreducible”, i.e. it need not be the smallest possible
collection of sets that have to be checked.
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FIGURE 1

Policy cutoffs in the one-period case

TABLE 3
Inverse image sets and & inequalities for the one-period example
a X S=U(a,x,0) Pr(M(a,-,x,-,a)gS |z) <®(S;6,)
1 1 0,7(1)) Pr((1, 1)|2)+Pr((1,0)|z) <z(l)
1 0 (0,7(0) Pr((1,0)|z) <7(0)
0 1 (z(1),1) Pr((0,1)|z) <1l-t(1)
0 0 (z(0),1) Pr((0,0)|2)+Pr((0, 1)|z) <1—-1(0)

To formalize the argument above, we define the set of policy functions that are identified
exclusively by the IV conditions and the data, with no use of the dynamic model. In particular,
for a given 6, and a given data generating process, we define

2V (6,)={o : condition (14) holds ¥S € Q(c,z) and Vz}NF. (15)

We emphasize that 7V (6,) is a subset of the space of admissible policies F and, as such,
incorporates all the natural economic restrictions—e.g. monotonicity—that one may be willing
to impose on F. Definition (15) immediately gives the following characterization of the sharp
identified set for (o,6,) based on the GIV restrictions.

Result 1.  Given the GIV restrictions in (15), the sharp identified set for (c,6,) is given by
{(0.6.):0 € =1V(0,). 21 (0,) #0}.

It should be noted that this set is sharp in the sense that it incorporates all the information
contained in the GIV restrictions (as well as natural constraints on the policy functions, such
as monotonicity). However, this set does not reflect the restrictions coming from the Bellman
equation or the parametric specification of profits. This will be accomplished in the second step.

Example 2. (Continued). In our monopoly entry example, the first step consists in characteriz-
ing the identified set for (o, p). If we focus on only one period of data, the policy function in (11)
is a non-parametric binary choice model with endogeneity and monotonicity restrictions, similar
to Chesher (2010). Given monotonicity in ujy, the policy function is fully described by two policy
cutoffs, t(x), for x€{0, 1}, as illustrated in Figure 1.

As in Chesher (2010) and Chesher and Smolinski (2012), even one period of data will generate
non-trivial bounds on the policy function. As a simple example of GIV restrictions, Table 3
illustrates the elemental inverse image sets associated with the example (in Column 2) as well as
the inequalities implied by the GIV restrictions (in the last columns of the table).

Note that (1) there are nontrivial bounds even in the absence of IVs, but (2) instrumental
variable variation is helpful to tighten those bounds. Note also that, by themselves, the restrictions
in Table 3 place no restrictions on 6,. It is not surprising that it is impossible, in the example,
to learn anything about serial correlation from restrictions on the single-period policy function.
However, with multiple periods of data, restrictions on the policy function may rule out some
values of serial correlation, even without reference to the structural model.
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1 1
(0,1,0) (1,1,0)
7-(1) (07070) 7'(1> (1,0,0)
7(0) |(0,1,1) 70)|  (1,1,1)
(0,0,1) (1,0,1)
00, 1 "0 o)

Elemental inverse image sets labelled as (x;1,ai1,ai2)

We illustrate this by considering two periods of data. Now there are eight elemental inverse
image sets U(a;,x;,0), in the space of (uj1,u;p), that depend on (x;1,ai1 =xXp»,ai2). These are
illustrated in Figure 2. The left panel gives the four elemental sets associated with the initial
condition x;1 =0, while the right panel gives the sets associated with x;1 = 1. For a given initial
condition, the model is complete (the sets do not overlap), but across initial conditions the sets do
overlap, reflecting incompleteness. For example, there are values of (uj1,uj) that are consistent
with both the sequence (1,1,1) and the sequence (0,0,0). If the initial x;1 was exogenous, the
model would be complete.

The sets in Figure 2 allow us to build some intuition about identification in this class
of models.?> Recall that the probability of each of the eight events associated with different
(xi1,ai1,aip) must be less than the probability weight placed by the distribution of (u;1,u;p) over
the regions of the elemental sets. In Figure 2, the joint density of (uj1,u;2), which varies with the
serial correlation parameter p, places the relevant probability weight over the various regions.
Note that in this example, with two time periods, we can rule out some values of p without any
use of the dynamic model. For example, perfect correlation, p=1, collapses the joint density
down to a straight line across the diagonal of each box. If in large samples we observe the events
(0,1,0) or (1,0, 1) conditional on any value of the instrument, then we can reject p =1 since the
associated GIV inequalities of the form (14) have a positive left-hand side and the right-hand
side equal to zero.

As another piece of intuition, consider an instrument associated with a probability equal to
one for initial condition x;1 = 1. The event probabilities associated with the right-hand side panel
of Figure 2 then sum to one and all of the associated inequality restrictions hold with equality.
These equalities are exactly the same as those that would be implied by maximum likelihood
applied to the model with an exogenous initial condition x;1 = 1. Thus, if MLE point-identifies the
parameters (t(0),t(1), p), then GIV identifies the same parameter values in this special case.

3.2. Second step: identification of the profit parameters

Given the identified set for (o, 6,) obtained in the first step, we now show how one can characterize
the sharp identified set for the structural dynamic parameters entering the profit function. These

22. The core-determining collection of sets also includes unions of partially overlapping elemental sets and further
unions of those sets, which we show in Supplementary Appendix A.
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results can be viewed as a generalization of the approach in Hotz, Miller, Sanders and Smith
(1994) (HMSS). As noted, for any 6 = (65 ,6,), we can use the Bellman equation to compute the
implied policy oy, defined as follows:

09 (Xiz, Wir, Ujr) =

argmax (77 (@it Xits Wig ig, O ) + 8 Eg, [V (Xigp 1, Wir1 Wig 1)\ @it Xig, Wi uit])-

air € A(xir)
The sharp identified set of parameters is then given by all (6,6, pairs whose associated policy
function is not rejected by the GIV restrictions. We formalize this in the following result.

Result 2.  The sharp identified set for the structural parameters (05 ,0,) is given by Op={0 =
(6r.6u): 09 € ="V (6)).

Note that Result 2 imposes the dynamic model—i.e. the restrictions from the Bellman equation
and any parametric assumptions on profits—as well as the GIV restrictions. This is the sharp
identified set because any 6 in this set generates—via the dynamic model—a policy function that
cannot be rejected by the data plus the sharp GIV conditions.

A natural question that arises is how to recover the profit parameters 6, from any given (o,6,)
pair. This question has been investigated extensively for models without serial correlation in
the unobservables. Here, we extend some of those methods to the case with serial correlation. In
particular, we show that, under certain conditions, the parameter 6, can be conveniently recovered
by solving a system of linear equations. To this end, we first set up a system of equations with as
many equations as unknowns; then, we use linearity of the profit function to show that the system
is linear in the profit parameters.

3.2.1. Setting up a system of equations. Define the action-specific value function as:*?

v(a,x,w,u;o0,0)=

> (16)
ﬂ(a,.x, W, U; 97T)+E0u ZBZT[(U()C;, Wt, M[),X[,Wz‘, Uz, 97‘[) a,x,w,u
t=1
Given that the true policy o is optimal, it must be the case that
o (x,w,u)=argmaxv(a,x,w,u;c,0) 17
a

for every (x,w, u). Thus, if a value 05, is in the identified set, it must be that it solves (17) for some 6,
and some o € &1V (6,)- Note that, given a pair (o, 6,) from the first stage, verifying this condition
is a static optimization problem and is therefore much easier than solving the associated Bellman
equation. Therefore, this static problem provides a general second-step method for finding the
sharp identified sets, including the case of dynamic games as discussed in Section 5.

In order to illustrate an even simpler approach based on (17), we extend an argument made
by HMSS for dynamic discrete choice models with i.i.d. unobservables. Our approach applies
to a wide class of models with discrete actions and continuous, possibly serially correlated
unobservables.>* More specifically, we use indifference conditions implied by (17) to write a

23. Much of the literature refers to this as the “conditional” value function.

24. See also Pesendorfer and Schmidt-Dengler (2010). This working paper version of later published work
emphasizes an indifference condition interpretation of policy functions in the context of dynamic discrete choice with
independent errors.
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system of equations in the profit parameters 6, that has at least as many equations as unknowns.
This is a minimal necessary condition for uniquely recovering 6.

To this end, fix a pair (&,éu) from the first step and let 6, denote a value for the profit

parameters that is consistent with (5, 67”) given the model. For now, we do not assume that such
a 6 is unique; later, we will provide conditions that ensure it is unique. If there is no such 6,
then the model rejects the pair (6 , éu). Suppose that, given (x,w) and a pair of actions, a and d’,

there exists a value of the unobservable, say i(a,da’,x,w), such that
1% (aa-xa Wa I‘;l(aa a/a-xa W); 67 (éﬂ' k] éu)) ZV(a/,.x, Ws ﬁ(aaals-xv W); &7 <é?[ ’ éu)) . (18)
We do not require that ii(a,a’, x,w) be uniquely defined by (18), only that it exist.

Assumption 1.. The variables (a,x,w) take discrete values and for each (a,x,w) there is an
action a’' #a such that there is at least one i(a,d’ ,x,w) satisfying the indifference condition in
(18).

Assumption 1 is a high-level assumption. In Berry and Compiani (2020a), we show the
indifference conditions in (18) are a natural extension of equations employed in the HMSS
second-step for multinomial discrete choice with independent errors. Not all second-step CCP
methods generalize easily (or at all) to the case of serial correlation, but this one does.?> The next
assumption provides more primitive sufficient conditions.

Assumption 2.. (i) The variables (a,x,w) take discrete values; (ii) the support of u is connected;
(iv) the action-specific value function v is continuous in u; (v) for each (x,w), & (x,w,-) takes at
least two distinct values.

Assumption 2(ii) is a standard support restriction; Assumption 2(iii) is also standard and can
be verified using results in Stokey et al. (1989) (see Theorems 9.8 and 9.11); Assumption 2(vi)
can be directly verified by inspecting the ¢ from the first step.

Lemma 1. Assumption 2 implies Assumption 1.

Proof. Fix any (x,w) € X x W. By Assumption 2(iv) and the definition of v, there are two actions,
a',ad”, and two values of the unobservable, u’, 1", such that

V<a/,x,w,u/;6, <§n,§u>) > V(a”,x,w, U6, (én,éu»
v(a”,x,w,u";&, (én,é,,)) > v(a/,x,w, u” 6, (én,éu)>.
Define

d(u)zv(a/,x,w,u;c?, (0},5,,)) —v(a”,x,w,u;&, (én,éu))

25. HM and Arcidiacono and Miller (2011) employed related multi-period indifference conditions to simplify a
second-step in problems with “finite dependence” and independent errors. These methods could be adapted to our case
as well if the underlying model featured additive independent errors in addition to any serially correlated component.
Kalouptsidi et al. (2021a) make use of related finite-dependence indifference conditions in their special case IV method.
Further exploration of finite dependence in our context is an interesting future research agenda.
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and note that d (u’ ) >0>d (u’ ¢ ) Thus, by the Intermediate Value Theorem for general metric
spaces,”0 there exists at least one u”’ such that d (u/ ” ) =0, which proves the claim. ||

We now show that these assumptions ensure that the system has at least as many equations
as unknowns. We consider the case in which profits are parameterized in a flexible way with
the elements of 8, representing the (deterministic) single-period profits for each combination
of (a,x,w). However, we maintain the economic restriction that profits are zero when a=0 for
all (x,w).2” Under more restrictive parameterization of profits, it may be possible to recover 6,
under weaker conditions.

Lemma 2. Under Assumption 1, the parameters 0 associated with the pair (6,@,,) from the

first step satisfy a system of equations with at least as many equations as the cardinality of A
minus one times the cardinality of X x W.

Proof. The result follows immediately from the fact that, given Assumption 1, one can write at
least as many equation of the form (18) as the cardinality of A minus one times the cardinality
of XxW. |

3.2.2. Exploiting linearity. Next, we show that, when the single-period profits are linear
in 05, the above yields a system of linear equations. The coefficients of this system are known

given a candidate (&,éu) from the first step and can be computed via forward-simulation as in
BBL.

Assumption 3.. The single-period profit function is linear in 6.

Result 3.  Fix a pair (6,5,,) from the first step. Under Assumptions I and 3, the parameters

O associated with (5,§u) satisfy a system of linear equations, with at least as many equations
as the cardinality of A minus one times the cardinality of X x W. Further, the coefficients of the

system are known given the model, (6,5,4), and the transition functions in (4)—(5).

Proof. HMSS show that when the single-period profit is linear in 6, then the action-specific
value function v is also linear in 0. This trivially extends to the case of serially correlated
unobservables, so that we can write

V(a,x, W, U; &’ (éﬂaéu)> :ho(avwiv u76',éu)+hl(a,wi, M’&véu)éﬂa

for some known functions g, h;.
For each (a,x,w), Assumption 1 then guarantees that we can write

I:hl(as-x’ws Zt(a,a/,x,w),&,éu)_hl(a/,x,w, ﬁ(a,a/,x,w),&,éu)]én =
(19)

ho(d,x,w,ii(a,d’ ,x,w), & ,6,) —ho(a,x,w,i(a,a ,x,w),&,6,)

26. See e.g. Theorem 4.22 in Rudin (1976).

27. In general, some restrictions on single-period profits are necessary for identification. While this is natural
in our entry example, these restrictions are not normalizations without loss (see e.g. Magnac and Thesmar, 2002;
Kalouptsidi et al., 2021b).
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for some a’ #a. This establishes the result. ||

Given this linear system, we have two cases depending on whether a standard (and directly
verifiable) rank condition is satisfied. If the rank condition holds, we can solve for the unique é,, in
closed form. Otherwise, we obtain multiple values of 6, associated with the first-step parameters.

One might wonder whether the value(s) of 6, obtained in the second step are always consistent
with the Bellman equation. This, paired with sharpness of the identified set for (o,6,) from the
first step, would imply that the identified set for 6, is also sharp. In the next section, we address
this for our illustrative entry/exit example and show that indeed the two-step approach delivers
sharp identification of the structural parameters.

We now go back to the monopoly entry model in Example 1 and we illustrate how Result 3
can be used to recover the structural parameters.

Example 3. (Continued). The goal is to recover the parameters (7,y) given a pair (o, p) from
the first step. For each value of x €{0, 1}, firms are indifferent between being in and out of the
market when uj; =t(x). This gives two indifference conditions involving action-specific value
functions of the form (18).%% Since the action-specific value functions do not have a closed-form
expression, we show how to approximate them via forward simulation. For any a and x,

Vi(a,x,t(x),0,0)=

S T S T
ZZ 75 ZZS’ =0} > d'eia.
s=11t=0 s 11=0 s=11t=0
where: (i) €] is set to the t(x)th quantile of €;; for t=0 and for t > 1 is drawn using (10) and
the correlation p from step 1, (ii) xy and ap) are set to x and a, respectively, (iii) aj for t>1
is determined by the policy o from step 1, and (iv) S,T are large numbers. The two equalities
v¥(0,x,T(x),0,0)=v(1,x,1(x),0,0) for x € {0, 1} then give a system of linear equations in (7, ).

As mentioned above, one might wonder whether the sharpness of the identified set for the
first-step parameters is inherited by the identified set for the structural profit parameters in the
second step. We study this in the context of Example 1. Specifically, we show that any value 7
obtained in the second step is consistent with the model’s Bellman equation. Thus, if the identified
set for (o, p) from the first step is sharp, the resulting identified set for 7 from the second step is
also sharp.

Result 4. In Example 1, let (G, p) be any pair from the first step with ¢ weakly decreasing in u
and p >0, and let T be any value of W returned by the second step. Then,

o (x,u) =argmaxv(a,x,u;0,7T,p) (20)
a

for all x,u, i.e. the policy & from the first stage solves the Bellman equation associated with &
and p.

28. In order to fully map our entry example into Result 3, note that we implicitly have used the two additional
restrictions that single-period profits are zero when firms decide to be out. Thus, we have in total four equations
corresponding to the cardinality of A x X.
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Proof. See Supplementary Appendix E. ||

So far, the discussion of the second step has focused on the case where the actions and states
are discrete. However, a similar logic applies to models with continuous actions. We illustrate
this via the following example.

Example 4 (Continuous-choice stochastic accumulation) Consider the “stochastic accumu-
lation problem” from Pakes (1994) and Doraszelski and Pakes (2007). In this model, firm i chooses
the level of investment aj;, a continuous variable, based on its current efficiency or quality xj;
(often taken to be discrete). The distribution of efficiency or quality at t+1 is assumed to be
stochastically increasing in aj;. In this case, the action-specific value function takes the form

7 (a,x,w,u,0;)+5Eq, |:ZV(x’=k,w/,u/)F(x’=k|x,a) w,u:|, 1)
k

where both the single-period profit and the transition I'(x' =k|x, a) are differentiable in a.
The optimal action then satisfies

o7 (a,x, w, 1,0 Or( =klx,
@XM | sy, | SV =k uy IR | (22)
da ! 2 da

Given a candidate (&,67,,), then we can reject a candidate 9~n unless

A (6 (e, w,u), x,w, u, 07
da

. (23)

ar /=k ’ s WV

8E§u |:Z V(x/:k,w/,u/) x |;caa(x w,4)) ’w,u:| =0.
k

As in the discrete case, linearity of the profit function is inherited by the value function and
forward simulation can be used to approximate the coefficients on 05, which allows one to back
out the profit parameters. Specifically, assume that for each (a,x,w) there is one u that satisfies
the first-order condition (23). Under this modification of Assumption 1 (as well as Assumption
3), one can write a continuum of linear equations in the profit parameters and back out the latter
subject to a rank condition.

We conclude this subsection by noting that our proposed second step does not require the
use of any inequality conditions. This is in contrast to existing approaches, such as BBL, which
require considering perturbations of the policy function from the first stage and imposing the
implied inequalities even in the absence of serially correlated unobservables.

3.3. Inference and implementation

So far, we have focused on identification. We now briefly discuss how to obtain confidence regions
for the structural parameters. We start by following the two steps outlined above and then discuss
alternative approaches.

The sharp identified set for the first-step parameters (o, 6,,) is characterized by the inequalities
(14). Therefore, estimates of the identified set and confidence regions for (o,6,) can be
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obtained by applying methods from the by now large literature on moment inequalities
models (see e.g. Chernozhukov er al., 2007; Andrews and Soares, 2010; Beresteanu et al., 2011;
Galichon and Henry, 2011; Andrews and Shi, 2013; Chernozhukov, Lee and Rosen, 2013). As
pointed out by CR, one issue that often arises is that the number of inequalities characterizing
the sharp identified set is large relative to the sample size, or even infinite. For example, in our
empirical application, we consider the entry and exit patterns from a cross section of markets
over 12 years. Since there can be zero, one or two firms in the market at any given point in
time, the number of inequalities associated with just the “elemental” sets is 312=531,441.
Fortunately, recent results provide some guidance on how to deal with the “many inequalities”
case. References include Menzel (2009), Chernozhukov, Chetverikov and Kato (2019), and
Andrews and Shi (2017). In our application, we use one of the bootstrap procedures proposed
by Chernozhukov et al. (2019) to obtain valid confidence regions for the parameters. Roughly
speaking, their approach provides an econometrically disciplined way of determining the subset
of moment inequalities that are most informative about the parameter values.

The second step in our approach maps the first-step parameters into the primitive single-period
profit parameters. As shown in Result 3, this map only depends on the model and does not involve
the data. In particular, all that is needed is knowledge of the action-specific value functions given
the first-step parameters. Standard forward-simulation methods can be used for this purpose, as
we have illustrated in the context of our simple monopoly entry model. With a large number of
simulation draws, the error from the second stage will be negligible relative to sampling error.
Alternatively, one could adjust the standard errors to account for any noise from the second step.

The two-step approach is not the only way to conduct inference. We can consider any approach
that imposes both the GIV restrictions in (15) and the structure of the Bellman equation. For
example, one option is to solve the model for each candidate value of the structural parameter 6
and verify whether the implied policy function satisfies the GIV restrictions. This full-solution
approach may yield computational gains relative to the two-step method if the first step of the latter
involves searching over many policies that are not consistent with the model. For example, the
model may assume linearity of the profit function, but since this is generally hard to translate into
a priori restrictions on the policy (i.e. into the definition of the set ), then the two-step approach
might involve a costly search over regions of the policy function space that are not consistent
with any linear profit specification. On the other hand, the two-step approach does not require
ever solving the model and thus may be preferable in cases where computing an equilibrium is
computationally expensive (as in e.g. many oligopoly models). A further consequence of this is
that the method is more robust in that it does not require uniqueness of the equilibrium.

The full-solution approach allows one to easily exploit a tight parameterization for the single-
period profits. The empirical literature sometimes goes even further and parameterizes both the
policy function and the profit function. This has the advantage of reducing the computational
burden of the search over policy functions in the two-step method. On the other hand, this
“double parameterization” has the undesirable feature that the functional form used for the policy
might be inconsistent with the profit parameterization in the sense that no choice of the structural
parameters leads—via the model—to the chosen functional form for the policy. Thus, in the
numerical illustration of Section 4, as well as in the empirical application (Section 6), we focus
on the first two approaches: the two-step procedure and the full-solution method.

4. NUMERICAL ILLUSTRATION

We now compute the identified set for the structural parameters in an instance of our simple entry
model. We will pay special attention to how the identified set changes with the number of time
periods, the strength of the instruments, and the presence of exogenous profit shifters. In order to
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abstract from sampling error and focus on the shape of the identified set, we draw a large number
of cross-sectional markets (50,000).

We set the deterministic profit parameter 7 to 0.5, the sunk cost y to 1.5, and the correlation
parameter p to 0.75, so that there is persistent unobserved heterogeneity. We generate time-
invariant excluded instruments z taking the values {0, 1} with equal probabilities and set x;| =z;
for a fraction of markets in the data equal to 0.50 or 0.75.2° We call this fraction “IV strength” and
note that it is equal to the square root of the R? coefficient in the regression of the endogenous state
x;1 on the IV (plus a constant).>® We compute the three-dimensional identified set for (7,7, p)
and we plot its projection onto the space of sunk cost and correlation parameters. Note that, since
we are treating both the policy and the deterministic profit function fully flexibly, the full-solution
method and the two-step approach give the same identified set.

First, we consider how the identified set varies with the IV strength as well as the number
of time periods (T=2 and T =10). In the case with T=2, we are able to list all of the GIV
restrictions implied by the model and thus obtain sharpness of the identified set. On the other
hand, with T =10, the number of inequalities in the GIV core-determining class becomes very
large. So, instead of listing all the inequalities, we use those corresponding to the sharp two-period
GIV identified set as well as those associated with several observable events over the ten time
periods.?! We pick events that intuitively should help us shrink the identified set. Specifically, we
use the events “the firm enters at least once”, “the firm exits at least once”, “the firm enters at
least once and exits at least once”, and “the number of firms in the market, x;;, does not change
for at least six consecutive periods”. To build some intuition, consider the latter event. We would
expect this to help rule out values of p close to zero, since it yields inequalities where the sample
probabilities on the left-hand side are large (the data exhibit a lot of persistence given that we set
p=0.75) and the model necessary conditions on the right-hand side are relatively small (when
p is close to zero the model predicts little persistence in the observables). A similar argument
applies to the other events we include. Figure 3 shows that, when IV strength is low and T =2,
the identified set is quite large. On the other hand, as expected, the set shrinks considerably as
the number of time period grows or the IV becomes stronger (Figure 4).

As a comparison, we report estimates obtained via two standard methods (MLE and GMM)
that assume away serial correlation in the unobservables, consistent with most of the existing
literature. In the MLE approach, we pool all observations along the cross-section and time-
series dimensions and maximize the resulting one-period likelihood. In contrast, in the GMM
approach, we use moments based on the two-period and three-period transitions as well, while
still restricting p to be zero. Both methods—and particularly GMM—tend to overestimate the
sunk cost. Intuitively, a model that assumes no serial correlation in the unobservables will load
all the persistence in the data onto the sunk cost, thus overestimating its magnitude. In addition,
Figures 7 and 8 in Supplementary Appendix A.2 show that MLE and GMM with p =0 tend to
underestimate the profit parameters.

29. For the remaining fraction, we let x;; be drawn from the stationary distribution for the state generated by the
model.

30. Specifically, IV strength = 0.50 corresponds to R =0.25 and IV strength = 0.75 corresponds to R =0.56.

31. Since itis hard to obtain a closed form for the model probabilities associated with these events, we approximate
the probabilities via simulation.
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Next, we explore the impact of adding an exogenous covariate w;; to the model. We specify
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Effect of exogenous covariate

so that wj; could be interpreted as a measure of market size such as population, aw;; + 8 represents
variable profits and y is again the sunk cost of entry. Further, we let €;; follow the AR(1) process
in (10), with v;; distributed A'(0,02). Following Pakes et al. (2007), we assume that the term
awj;+ B has already been estimated outside the dynamic model and we focus instead on the
parameters y, p and ,,.>>> 3> When generating the data, we seta =1.5, =—1,y =1.5,p=0.75,
oy =1, and we focus on the case where IV strength is low. Regarding the distribution of the
covariate, we let the initial w;y for each market take the values {0.15,1.00,1.65} with equal
probabilities and evolve according to a transition matrix that has a value of 0.6 on the diagonal
and of 0.2 in all the non-diagonal elements. Note that the parameter values are chosen in such a
way that the single-period profit function when w;; =1 is the same as in the model without wj;.

Because wj; is exogenous, it can be used as an additional conditioning variable in the GIV
inequalities along with the excluded IV. Thus, adding w;j; to the model increases the number
of inequalities that each candidate parameter value must satisfy in order to be included in the
identified set. On the other hand, the model now features more parameters, so it is not clear a
priori whether the identified set for, say, y and p is going to be bigger or smaller relative to the
case with no variation in w;;. As shown in Figure 5, in this case, adding variation in the exogenous
covariate substantially shrinks the identified set for y and p.

Finally, we illustrate how the identified sets translate into bounds on counterfactual quantities.
For brevity, we focus on the case with 7 =2, strong IV and no exogenous covariate w;;. We consider

32. Alarge literature in IO discusses how to recover variable profits from data on equilibrium quantities and product
attributes (see e.g. Bresnahan, 1981, 1982; Berry and Haile, 2014). Our example features sunk costs, but not fixed costs
in order to keep the number of structural parameters small. The empirical application in Section 6 allows for both fixed
and sunk costs.

33. Note that, unlike the case without w;;, here we are not allowed to normalize o, since the non-stochastic part
of the period-profits is modelled parametrically. Accordingly, for this design, we report the standardized sunk cost J% to
ensure comparability with the plots for the case without w.
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TABLE 4
Number of firms
True GIV MLE p=0 GMM p=0
Baseline 0.659 (0.612, 0.701) 0.817 0.763
1 Sunk cost (A) 0.059 (0.017, 0.123) 0.012 —0.154
Entry subsidy (A) —0.023 (—0.052, —0.011) —0.167 —0.140

Notes: The first row shows the average number of firms in the market in the absence of policy changes. Rows 2-3 show
the change—relative to the first row—in the average number of firms in the market 10 years after the policy change (an
increase in the sunk cost and a subsidy to entry, respectively). The dgp has T =2, strong IV and no w;, covariate.

TABLE 5
Fraction of new firms
True GIV MLE GMM
p=0 p=0
Baseline 0.591 (0.460, 0.781) 0.574 0.516
1 Sunk cost (A) —0.193 (—0.349, —0.098) —0.291 —0.270
Entry subsidy (A) 0.124 (0.066, 0.209) 0.366 0.379

Notes: The first row shows the average fraction of new firms in the market in the absence of policy changes. Rows 2-3
show the change—relative to the first row—in the average fraction of new firms in the market 10 years after the policy
change (an increase in the sunk cost and a subsidy to entry, respectively). The dgp has T =2, strong IV and no w;; covariate.

two counterfactual scenarios: (1) an increase in the sunk cost of entry by 4.00—corresponding
to 267% of its true value—which we call “the sunk cost counterfactual” for brevity; and (2) a
1.25 subsidy to entry—corresponding to 83% of the true value of the sunk cost—which we call
“the subsidy counterfactual”. The sunk cost counterfactual is meant to simulate a policy, such
as environmental regulation, that only constrains new entrants. On the other hand, the subsidy
counterfactual mimics a policy encouraging entry of new firms that might be using cleaner or
otherwise better technology.

The procedure we employ to assess the impact of these shocks is as follows. For each market
in the data, we draw many time series for the unobservables and look at how the number of firms
as well as the fraction of new firms—defined as firms that enter after the policy change—evolve
10 years after each of the two counterfactual changes.>* We then average across markets as well
as realizations of the unobservables.

Tables 4 and 5 show the results for the GIV approach as well as the MLE and GMM models
with p=0. One can see that assuming away serial correlation in the unobservables leads to
bias in the estimated reaction to the policy changes, in terms of both the number of firms and
the fraction of new firms. The effects of the policies tend to be overstated, in particular for the
subsidy counterfactual. Intuitively, when p =0 the unobservables drawn in the counterfactuals
will exhibit much less persistence relative to their true distribution. This, in turn, leads to an
excessive amount of predicted entry and exit.

5. DYNAMIC OLIGOPOLY

We now extend the analysis to the setting where multiple firms interact in each market. In this
section, we describe the model and study identification. Supplementary Appendix B presents a
computed example.

34. This requires choosing an initial value for the unobservable. For each market, we compute the bounds on
uo implied by (xo,ap) and the model, and repeat the exercise twice setting uo equal to the upper and lower bounds,
respectively. We then take the convex hull of the two resulting outcomes.
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In the oligopoly case, each firm’s equilibrium policy is its single-agent best reply to its rivals’
equilibrium strategies. The firm still solves a value function problem similar to (7), but its
expectations of the future evolution of endogenous market states depend on its action as well
as the equilibrium actions of its rivals. Throughout this section, we assume complete information
for the serially correlated components of unobservables. If the serially correlated unobservables
are not common knowledge across all players, standard equilibrium concepts such as perfect
Bayesian equilibrium often become intractable in that they imply that the entire history of play
enters the current state. Fershtman and Pakes (2012) propose a tractable framework to deal with
persistent sources of asymmetric information and our methods might be usefully merged with
theirs.*

Since there are multiple firms per market, here, we require our original notation of i for the
market and j for the firm. If the equilibrium policies of firm j’s rivals are given by the function
o_j, then the firm’s expected equilibrium state transition probabilities are given by

T (irg1 laije it Wie, 0 (Xig, Wi, i) ) - (24)

This notation allows for a rich set of possible state transitions models, including oligopoly
variations on our earlier single-firm examples.
Firm j’s equilibrium Bellman equation then depends on the equilibrium strategies of its rivals:

Vi (xie, wie, uig, 0—j) = (25)
max (7 (air, Xig, Wir, ir; O ) + 8 Eg, [V} (Xt 1, Wit 1. Uit41,0—j) i X, Wit it ]) -
Aijt E-A(xijr)

The expected Bellman’s equation is

E[Vi(x'. W) |a,x,w,u,0_]=
~/»//‘/j(XI’W/’u/’a_j)df‘j(xqaj’x’W’G—j(wivu))dQ(W/|W)d&>(u/|u;eu).

Associated with this dynamic program is a best response strategy for firm j, which we assume is
unique,36 denoted by aj(0—;,60). The vector of best response strategies is then the J-vector

o(0,0)=(01(0-1,0),...,67(0_7,0)).
Any vector of equilibrium strategies, o *, must satisfy the fixed point
o*=ao(c",0). (26)
We can then define the set of possible equilibrium policy function vectors as
B0y ={c*: 6*=5(c*,0)).

We adopt the same approach as in earlier papers and assume that, even if the underlying model
admits multiple equilibria, the firms themselves always play the same policy function when at

35. In the working paper version of this article (Berry and Compiani, 2020b), we illustrate a computed oligopoly
problem that features both (1) serially correlated errors that are observed by all the firms and (2) private information
shocks that are independent over time. The combination of observed (by rivals) errors and private information errors is
reminiscent of the discussion in Pakes et al. (2015).

36. Note that we assume uniqueness of the best reply (see footnote 12) but not of the overall equilibrium strategy
profile.
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the same state vectors.?” The true policy function that generates the data is then an element of the
set ©EC(0), where 6 is the true parameter that generates our data.

The sharp identified set of parameters in the oligopoly case is the same as in the single-
agent case, except with the further restriction that the policies associated with 6 are a vector of
equilibrium policies:

Omp={0=(0z,0,): there exists o* € £FC(6) such that o* € =V (6,)}. (27)

That is, a parameter vector 6 is in the identified set if there is a policy vector that both (1) is not
rejected by the IV restrictions and the data (given 6,) and (2) is a vector of equilibrium strategies
given 6.

In practice, we may recover @;p via a two-step procedure, just like in the single-agent case.
First, note that the argument for the first step from Section 3.1 immediately extends to the
oligopoly setting, since displays (12) to (15) continue to hold when the variables aj, xjr, Wiz, ujs
and the function o are vector valued. Thus, we can characterize the identified set for the policy
vector £/ (6,) using the GIV restrictions. Second, one can easily extend the dynamic best reply
condition (17) to the oligopoly setting as follows:

oj(x,w,u)=argmaxvj(aj,o_; (x,w,u),x,w,u;0,0), (28)
9

where v; is the oligopoly analogue of (16) for firm j. Note that, in defining v; for the oligopoly case,
we treat the actions of rival firms as being generated by o_; (in addition to generating the future
actions of firm j based on 0j). As in the single-agent case, the best reply in (28) is therefore a static
optimization problem and does not require solving any Bellman equations. Furthermore, it is a
general condition that can be used to characterize the identified set in any problem. Specifically,
the sharp identified set for 6, is characterized as the values of the profit parameters that solve
(28) for some 6, and some o € =V 6n).

As in the single-agent case, in many oligopoly cases one can find simple indifference
conditions that are necessary for the best reply equation in (28). In that case, the second-step
search for the identified set of single-period profit function parameters may again be characterized
as the set of solutions to a system of linear equations. In the next section, we illustrate this via an
oligopoly empirical application. The exact indifference conditions yielding the system of linear
equations for our application is given in Supplementary Appendix D.

It may be useful to compare our oligopoly procedure to other two-step procedures in the
literature. Our two-step procedure of the last paragraph is quite similar to Bajari et al. (2007),
with two differences. First, the policy functions are identified via GIV conditions. Second, we
obtain the sharp identified set via the static best-reply condition (perhaps through the implied
linear indifference conditions), whereas BBL suggest the use of various inequality conditions
that are motivated by the same best reply condition.

We can also compare our approach to “full-solution” approaches that search across the set of
“structural” parameters (6, 6,), at each point solving for a (one hopes) unique equilibrium. We
believe that our set-identification approach clarifies identification issues in a way that is often
hard to do with full-solution approaches. There are also a number of more practical differences.
Full-solution methods become particularly hard in the case of possible multiple equilibria.*8

37. This approach was adopted approximately simultaneously in Bajari ef al. (2007), Pakes et al. (2007), and
Pesendorfer and Schmidt-Dengler (2008).

38. See the online appendix of Doraszelski and Satterthwaite (2010) for examples of multiplicity. Further examples
are in Pesendorfer and Schmidt-Dengler (2010). Borkovsky, Doraszelski and Kryukov (2010) provide a homotopy
method for exploring a range of possible multiple equilibria.
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Once an equilibrium is calculated for a given parameter value, a full computational method must
then compare the model’s predictions to data. If the model features a natural solution to the
initial conditions problem, then the fit to data might be done via maximum likelihood (as in
e.g. Rust, 1987; Igami, 2018) or else via a fit of data moments to moments predicted from the
model (Pakes and McGuire, 2001). In contrast, our method naturally accounts for unrestricted
initial conditions and never requires a computed solution to the equilibrium fixed-point problem,
or even a solution to the single-agent contraction mapping. In our method, the “fit to data” is
provided by the GIV method. In the absence of an initial conditions problem, the GIV approach
often collapses into an MLE or method of moments approach, reducing the difference between
the methods.

The computational trade-off is that our method requires us to find a confidence region for the
identified set of policy functions. The nature of the trade-off here may vary with the fine details
of the problem and (in the absence of multiple equilibria issues) might favour either method.
Note that we could, if computationally advantageous, also employ a full solution method. In this
case, the “fit to data” for a computed equilibrium would involve testing the GIV conditions for
the policy function implied by the equilibrium behaviour. In our empirical example, we employ a
full-solution GIV approach (assuming a unique equilibrium and allowing for an initial conditions
problem) as well as the two-step approach that we have discussed in this section (which does not
require a unique equilibrium).

6. EMPIRICAL APPLICATION TO ENVIRONMENTAL POLICY STYLE
COUNTERFACTUALS

In order to illustrate the approach, we apply it to the ready-mix concrete industry studied by
Collard-Wexler (2014) (henceforth, CW). CW quantifies the magnitude of the sunk cost of entry
in each of many isolated markets in the US and uses these estimates to assess how persistent the
effects of a horizontal merger are in this industry. More specifically, CW first estimates the firms’
policy functions based on data on the number of ready-mix concrete plants and demand shifters.
Given the policies, the article then simulates the evolution of a market following a merger to
monopoly and evaluates how long it takes for a second firm to enter.>*> CW imposes an intuitively
appealing parametric form for the policy functions, rather than deriving them from an underlying
dynamic model. One of our approaches below will roughly mimic this approach.

We use the same data and modelling framework as CW, but estimate all of the structural
parameters as opposed to just the policy functions and the serial correlation parameter.*® This
allows us to address the counterfactual effects of policies that affect the “structural” profit function.
In particular, we consider policies—similar to the environmental policies in the cement industry
study of Ryan (2012)—that alter sunk costs. In addition, since the GIV approach accommodates
incomplete models, we are able to tackle the initial conditions problem in a flexible way. CW
addresses the initial conditions problem by simulating the probabilities of the initial states via a
modification of the GHK algorithm, which requires assuming that the industry has been following
the same set of policies for a long time.

Note that our application is intentionally simplified to serve as an example within a longer
methodological paper. In particular, for this worked empirical example, we want to avoid the large,

39. Lazarev, Benkard and Bodoh-Creed (2018) also consider counterfactual questions that only require knowledge
of the dynamic policy functions, but not the structural single-period profit parameters.

40. Collard-Wexler (2013) estimates a full model of industry dynamics using firm-level data under the assumption
that the dynamic states are econometrically exogenous. We use coarser market-level data, but address the endogeneity of
market structure.
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TABLE 6
Summary statistics
Variable Mean St. Dev. Min Q25 Median Q75 Max
Number of plants 0.97 0.93 0 0 1 1 6
Construction employment 519 819 3 166 316 592 17,772
% Household income growth 1969-89 0.15 0.11 —0.16 0.08 0.14 0.21 0.69

Notes: Fully balanced panel of 428 markets between 1994 and 2005.

TABLE 7
Ordered probit results
Log construction employment 0.14**
Income growth 1969-89 0.22%*
Likelihood-ratio test p-value 0.00

Notes: Dependent variable is number of plants. ** denotes significance at
the 95% level.

growing and important literature on methods that solve the computational challenge of methods
that involve both (1) many parameters and (2) many inequality restrictions. Examples of this
literature include Chen, Christensen and Tamer (2018) and Kaido, Molinari and Stoye (2019).
To keep the number of parameters small, we use an intentionally simplified state space and, even
then, we place further parametric restrictions. This gives us models with as few as five parameters
so that we can easily apply a multidimensional grid search to compute the required confidence
regions. Our restriction to problems amenable to a grid search is obviously strong given the state
of the literature, but it removes complex computational choices from the list of problems we need
to tackle.

Table 6 summarizes the variables we use. The data on the number of plants and construction
employment is the same as in CW and we refer the reader to that paper for more details. Briefly,
the number of plants variable measures how many firms are active in each isolated town, while
construction employment captures demand for ready-mix concrete. We follow CW and treat
construction employment as exogenous, while the number of concrete plants is endogenous. In
addition, we obtain data on past household income growth at the county level from the US Census
website. We assume that past income growth is excluded from the current profits of concrete firms
and that, conditional on current construction employment, past income growth is independent of
within sample unobserved shocks to profitability. Past income growth therefore serves as an
excluded instrument r; in our model.

Table 7 shows results for a “quasi first-stage regression”. This table presents an ordered probit
model with the number of firms as the dependent variable. We see that the coefficients on both
exogenous variables are positive and precisely estimated. The result suggests that our excluded
instrument is “relevant”, even when conditioning on current demand. Of course, the true reduced
form of the model is not an ordered probit and, we present this merely as a descriptive result.*!
We conclude our brief descriptive analysis by noting that the number of plants exhibits substantial
persistence over time in the data, with x,4 1 being equal to x; with probability around 0.90.

41. The results in Table 7, as well as those from structural estimation, are based on a discretized version of the
original data. Specifically, since more than 90% of the original observations at the market-year level have two or fewer
plants, we censor the number of plants at two, which reduces the number of parameters to estimate in the structural model.
Similarly, we discretize construction employment and household income growth. For each variable, we define a high and
a low value depending on whether a given observation is above or below the median.
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We now turn to the structural analysis. As in CW, we estimate a version of the Last-In First-Out
model developed by Abbring and Campbell (2010). Again, we refer the reader to CW for more
details on what assumptions are imposed and why this is a suitable oligopoly model in the context
of the ready-mix concrete industry. We specify the single-period profit function as follows:

Qx, Wir — B+ui if wasin atz—1, staysin at ¢
it = | O, Wir — B — v + i if wasoutatr—1, enters at? , 29)
0 if is out at ¢

where w;; denotes construction employment (in thousands) in market i in year ¢, oy, is a
coefficient that depends on the number x;; of active firms in market i at time ¢, 8 represents
the intercept of the variable profit function as well as any fixed costs, y is the sunk cost
of entry, and u;; denotes a potentially serially correlated unobservable shock to profitability.
We impose the natural restriction ap < %', i.e. that per-firm variable profits (weakly) decrease
with the number of competitors. Further, we assume that, conditional on u;;_1, u;; is equal
to u;;—1 with probability p and is drawn uniformly from the [—1,1] interval with probability
1—p. This parametric specification for the joint distribution of the unobservables is used by
Abbring and Campbell (2010), who show that it satisfies their Assumption 3. This, along with
other mild assumptions, ensures the existence and uniqueness of a Markov-perfect equilibrium
in Last-In First-Out strategies if the model features one scalar exogenous state variable. In our
setting, this corresponds to the case where w does not vary over time, so that the only time-varying
exogenous state is u. We estimate this model by fixing w at its initial value in each market and
assuming firms take it to be constant over time (which is not too far from what is observed in the
data). We also estimate a model in which w varies over time. In this case, the uniqueness result in
Abbring and Campbell (2010) does not directly apply. We will show that our two-step approach
(which does not require uniqueness of the equilibrium) delivers virtually the same results as the
full-solution method (which does require uniqueness), indicating that multiplicity of equilibria
does not play an important role in our context.

Given the relatively long time dimension of the panel (11 years), the number of moments
that could characterize the sharp identified set is very large, implying a substantial computational
burden.*? In addition, the elemental sets are associated with events that have very low probability
individually, so that the left-hand side of (14) is small and the moment inequalities tend to be
underpowered. Thus, we focus on a subset of inequalities corresponding to observable events
that intuitively should help identify the structural parameters and happen with relatively high
probability in the data. A complete list of moments is provided in Supplementary Appendix C.

We consider three types of sets, largely inspired by the core determining sets in our simple
two-period entry example. First, we take the elemental sets corresponding to the cases where the
number of firms is constant over time; these are the analogs to the events (0,0,0) and (1,1,1) from
Figure 2 in the two-period example. Second, we add inequalities corresponding to cases in which
the number of firms changes. Instead of listing all possible elemental sets in this category, we
focus on “coarser” events that have higher probability. For example, we consider the event “some
entry and some exit occur”, which is the extension to more than two periods (and more than one
firm) of events like (0, 1,0) from Figure 2. To provide some more intuition, consider the event “no

42. The number of elemental sets is the number of possible outcomes (3) to the power of the number of time periods
(11) times the number of possible combinations of w and z (4 in our simplest case), giving more than 700,000 sets before
we consider the unions of the elemental sets that may also contribute to the Chesher and Rosen (2017) core-determining
sets. Note that additional unions of sets may also be useful in inference (because their probability is well-measured in the
data) even if they are unnecessary for identification.
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entry or exit occurs in the 11-year period”. If this occurs often in the data, it might help rule out
values of serial correlation close to zero. Conversely, if the event “the number of firms changes at
least once” has large enough probability, the corresponding inequalities should rule out values of
serial correlation very close to 1. Third, we include inequalities corresponding to the events “there
is at least one period with n firms, for =0, 1,2”. These events happen frequently in the data,
leading to relatively large probabilities on the left-hand side of (14) and thus aiding identification.

Each of the events described above leads to multiple inequalities, corresponding to the different
values of the instruments (construction employment and past income growth) as well as xg.
Variation in the instruments is helpful for identification. If an event happens relatively often in the
data conditional on a value of the instruments, it will tend to make the probability on the left-hand
side of (14) large and reject parameter values that deliver smaller probabilities on the right-hand
side. In particular, past income growth is our exogenous predictor of the initial conditions xy and
therefore should help tackle the incompleteness of the model resulting from the endogeneity of
xo (see Honoré and Tamer, 2006).

Even if we are only using inequalities that intuitively should aid identification, we are still
left with a large number of them. In total, we obtain 266 (unconditional) inequalities, which
is of the same order of magnitude as the number of markets in the data (428).** Thankfully,
we can leverage recent developments in the econometrics literature to perform inference in this
“many moment inequalities” setting. Specifically, we report (likely conservative)** projections
of a confidence region for the multi-dimensional structural parameter obtained via the two-step
multiplier bootstrap approach proposed by Chernozhukov et al. (2019) (henceforth, CCK). Note
that the CCK procedure allows us to include a very large number of inequalities, which may
alleviate some concerns about robustness to the inclusion or exclusion of particular inequalities.
We also follow CCK in generating a large number of draws to approximate the integrals
corresponding to these events and ignoring the corresponding simulation error. Simple diagnostics
suggest that the simulation variance is indeed negligible relative to the sample variance.

We estimate our GIV model in two ways. First, we use a traditional full-solution approach in
which we solve the model for each candidate 8 and verify whether the implied policy functions
satisfy the GIV restrictions. This method requires a model with a unique equilibrium. However,
as mentioned above, when we take w to be time-varying, our model does not satisfy the unique
equilibrium conditions of Abbring and Campbell given that there are two exogenous state
variables—w and u. Therefore, we also estimate a version of our two-step method, which does
not require uniqueness of the equilibrium. Specifically, for each combination of policy thresholds
and values of p in a grid, we check the GIV inequalities. If the candidate point passes the test, we
then perform the second-step inversion to obtain the associated profit parameters, as described
in Supplementary Appendix D. Finally, we check whether these unrestricted profit parameters
satisfy the parametric restrictions in (29) (up to a tolerance). So, both the full-solution and the two-
step method impose the same parametric restrictions on the profit function but leave the policy
functions unrestricted. This implies that the two-step approach is strictly more flexible than the
full-solution method in that it allows for multiplicity of equilibria under the same parametric
assumptions. In terms of computation times, testing each candidate structural parameter using
MATLAB on a 1.90 GHz processor takes 10.35 s in the full-solution approach. As a comparison,
for each candidate parameter, the two-step method takes 8.12 s for the first step and 52.41 s for the

43. In the model where w is fixed, the sharp GIV inequalities corresponding to 7'=2 periods are easy to compute
and we include those as well, yielding a total of 654 inequalities. Removing the 7 =2 inequalities does not substantially
change the results.

44. The approach in Kaido et al. (2019) could be used to obtain confidence regions for the projections themselves.
A recent paper by Bai, Santos and Shaikh (2022) provides another approach to testing many moment inequalities.
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TABLE 8
Full-solution parameter estimates
Full-solution GIV MLE p=0 GMM p=0
aj (0.16, 0.17) (0.042, 0.045) (0.10, 0.20)
a (0.001, 0.002) (0.01, 0.02) (—0.013, 0.015)
wi fixed B (0.226, 0.232) (0.038, 0.043) (—0.04, —0.02)
y (2.56,2.57) (1.44, 1.46) (6.40, 10.56)
o (0.68, 0.70) - -
aj (0.05, 0.54) (0.034, 0.055) (—0.003, 0.071)
a (0,0.21) (0.004, 0.018) (0.0008, 0.0259)
w;; varying B (—0.23, 0.86) (0.023, 0.063) (—0.54, —0.10)
y (0.43,9.61) (1.36, 1.50) (4.21, 10.50)
P (0.34, 0.90) - -

Notes: The intervals are projections of a confidence region for the multi-dimensional structural parameter and have at
least asymptotic 95% confidence level.

second step. In our model, the full-solution approach is relatively inexpensive since computing
an equilibrium is fast. In other oligopoly models, this may not be true and the two-step method
might yield substantial computational gains relative to the full-solution approach.

In addition, we estimate three models that set p =0 and thus assume away serial correlation.
Two are full-solution methods corresponding to the MLE and GMM approaches used as
benchmarks in the numerical illustration of Section 4. A third method mimics the standard two-
step approaches with exogenous states. In particular, we use the same double parameterization
as in the GIV two-step procedure described above, but we set p =0 and estimate the policy in the
first step by MLE.

Tables 8 and 9 display confidence intervals for the structural parameters in specification (29)
based on the full-solution and two-step approaches, respectively. First, both GIV approaches
give estimates of p that are positive and significantly different than zero, indicating substantial
persistence in the unobservables over time. Second, the full-solution GIV confidence intervals
(which require uniqueness of the equilibrium) are virtually the same as the two-step GIV
confidence intervals (which are robust to multiplicity). This is trivially the case when w is fixed
over time since then the results in Abbring and Campbell (2010) guarantee uniqueness under mild
conditions. The fact that the confidence intervals continue to be essentially the same when w varies
over time suggests that multiplicity of equilibria is not a first-order concern in this setting.*> Third,
the approaches that rule out serial correlation in the unobservables give significantly different
results in the case when w is fixed over time. In particular, while the MLE and two-step methods
with p =0 are comparable, the GMM approach yields a much larger sunk cost y and lower 8.
Under the null hypothesis that p =0, we would expect all three methods to give similar results
and so we conclude that the data rejects the hypothesis in favour of serial correlation.

The model with w fixed yields very small confidence regions, which leads to possible concerns
that the fixed w model is nearly rejected by the data. In contrast, in the model with w varying over
time, the GIV confidence intervals are wider. This model is not close to being rejected by the
data perhaps because it does a better job at capturing the true data generating process. Further,
intuitively, when w varies over time, the conditioning variables in the GIV moments become
“finer” and the moments tend to be estimated less precisely in our relatively small sample.

45. If we relaxed the tolerance used to impose the parametric restrictions in the second step, the two-step approach
would yield larger confidence intervals. This points to a possible use of the two-step method as a way to assess robustness
to the parametric assumptions of the model.
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TABLE 9
Two-step parameter estimates
Two-step GIV Two-step p=0
o (0.16, 0.17) (0.006, 0.010)
o (0.001, 0.002) (—0.005, —0.002)
wi, fixed B (0.226, 0.232) (—0.036, —0.030)
y (2.56,2.57) (1.62, 1.68)
P (0.68, 0.70) -
o (0.05, 0.54) (0.009, 0.192)
o (0,0.21) (—0.004, 0.009)
wj; varying B (—0.23, 0.86) (—0.032, —0.008)
y (0.43,9.61) (1.49, 1.77)
P (0.34, 0.90) _

Notes: The intervals are projections of a confidence region for the multi-dimensional structural parameter and have at
least asymptotic 95% confidence level. The two-step GIV confidence intervals for the case with w; fixed are the same
as the full-solution intervals from Table 8 since the two models impose the same restrictions. The fact that the two-step
GIV confidence intervals for the case with w;; varying are the same as the full-solution intervals from Table 8 suggests
that multiplicity of equilibria does not play an important role in this application.

To investigate whether allowing for endogeneity of market structure makes a difference for
policy-relevant questions, we turn to counterfactual analysis. As in the simulations of Section 4,
we consider how the number and composition of firms in the market vary with two policy changes:
(1) an increase in the sunk cost y and (2) a subsidy to entry. The first can be thought of as arising
from environmental regulation, such as a mandate for new firms to invest in technology to reduce
polluted water from running off concrete operations, whereas the second could be motivated by
the goal to incentivize entry of newer—and perhaps cleaner—firms. We assume that the policy
change occurs at the end of the sample period and then compare the model predictions 5 years
later to the model predictions in the absence of policy change. Repeating this for each value in the
confidence region for the structural parameters yields confidence intervals for the counterfactual
quantities of interest.4®

Tables 10 and 11 show the counterfactual results based on the model with w fixed and w
varying, respectively. In each case, we report only one set of GIV results given that the full-solution
and two-step approaches yield virtually the same estimates and thus the same counterfactuals.
In the case with w fixed (Table 10), all of the three methods that assume away serial correlation
in the unobservables give results that are significantly different relative to the GIV method. In
particular, maximum likelihood and two-step with p =0 tend to over-estimate the response to
the counterfactual policy in terms of both the change in the number of firms and the decrease
in the percentage of new firms after the policy change. Intuitively, the i.i.d. assumption forces
the unobservables to vary too much from one period to the next, which translates into excessive
variation in the implied market outcomes relative to the model with serial correlation. In contrast,
the GMM approach with p =0 predicts much smaller changes due to the fact that it estimates a
larger sunk cost to begin with.*’ Turning to the case with w varying (Table 11), we find broadly
similar patterns. However, the GIV confidence intervals are now wider, consistent with the fact
that the structural parameters are pinned down less precisely. This illustrates that the model
specification matters.

46. For the first counterfactual, we increase the sunk cost by the same amount for each parameter value in the
confidence set. We set this amount equal to 10% of the midpoint of the (projection of the) full-solution confidence region
for y.

47. The GMM confidence intervals for the baseline number of firms and fraction of new firms include negative
values because the point estimates are close to zero and the standard errors are relatively large.
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TABLE 10
Counterfactual outcomes with w fixed
GIV MLE p=0 GMM p=0 Two-step p=0

No. of firms

Baseline (0.65,0.72) (0.68,0.77) (—0.74, 1.52) (0.88, 1.02)

4 Sunk cost (A) (—0.09, —0.05) (—0.15, —0.14) (—0.07,0.07) (—0.22, —0.15)

Entry subsidy (A) (0.07, 0.08) (0.49, 0.55) (0.07,0.29) (0.53, 0.66)
% of new firms

Baseline (12.5, 14.5) (31.3,34.7) (=3.1,3.7) (17.2,22.2)

4 Sunk cost (A) (—3.5, -2.6) (—14.6, —13.3) (—2.1,2.1) (=7.1,—4.7)

Entry subsidy (A) (10.2, 12.8) (22.4,24.8) (—4.6,4.6) (22.2,27.4)

Notes: For each outcome of interest (number of firms and percentage of new firms), the “baseline” numbers refer to
the average outcomes in the absence of policy changes, whereas the next two rows report the change—relative to the
baseline—in the counterfactual scenario where the sunk cost is higher and lower, respectively. All intervals have at least
asymptotic 95% confidence level.

TABLE 11
Counterfactual outcomes with w varying
GIV MLE p=0 GMM p=0 Two-step p=0

No. of firms

Baseline (0.31, 1.56) (0.73, 0.84) (0.69, 3.06) (0.87, 1.01)

4 Sunk cost (A) (—0.18, —0.003) (—0.19, —0.16) (—0.15, —0.03) (—0.21, —0.14)

Entry subsidy (A) (—0.05, 0.72) (0.44, 0.55) (—0.008, 0.22) (0.52, 0.66)
% of new firms

Baseline (4.9,46.9) (29.3,36.9) (2.11,9.25) (17.9,22.7)

4 Sunk cost (A) (—8.2,—-0.1) (—14.8, —10.8) (-5.1,-0.2) (—6.9, -5.0)

Entry subsidy (A) (1.8, 37.6) (20.5, 26.2) (-1.7,7.5) (22.3, 26.9)

Notes: For each outcome of interest (number of firms and percentage of new firms), the “baseline” numbers refer to
the average outcomes in the absence of policy changes, whereas the next two rows report the change—relative to the
baseline—in the counterfactual scenario where the sunk cost is higher and lower, respectively. All intervals have at least
asymptotic 95% confidence level.

In sum, these policy counterfactual results show that models which artificially set the serial
correlation parameter to zero, as is common in much of the literature, may lead to substantial bias
in counterfactual analyses.

7. CONCLUSION

In this article, we have proposed an approach to identification and inference in dynamic models
with serially correlated unobservables. We tackle the resulting endogeneity of dynamic states by
relying on the type of IVs intuition that is commonly used in static models. In order to characterize
the identified sets for quantities of interest and obtain confidence regions, we leverage recent
results in the econometrics literature on partially identified models and the associated inference
literature. Our empirical application extends work by Collard-Wexler on dynamic entry models
with serially correlated unobservables to consider policy counterfactuals that are motivated by
classic questions in environmental economics. We find that approaches ignoring serial correlation
can significantly misstate the effects of policies that affect the underlying profitability of an
industry, such as an environmental regulation that affects the sunk cost of entry.

This article opens several avenues for future research. Most importantly, it would be interesting
to apply the proposed approach to a wider class of empirical settings and see how accounting for
the endogeneity of market structure affects additional counterfactual policy results.
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