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Although an auction of drilling rights is often cited as an example of
common values, formal evidence has been limited by the problem of
auction-level unobserved heterogeneity. We develop an empirical ap-
proach for first-price sealed-bid auctions with affiliated values, unob-
served heterogeneity, and endogenous bidder entry. We show that im-
portant features of the model are nonparametrically identified and
apply a semiparametric estimation approach to data from US offshore
oil and gas lease auctions. We find that common values, affiliated pri-
vate information, and unobserved heterogeneity are all present. Fail-
ing to account for unobserved heterogeneity obscures the evidence
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common values in oil lease auctions 3873
of common values. We examine implications of our estimates for the
interaction between affiliation, the winner’s curse, the auction rules,
and the number of bidders in determining the aggressiveness of bidding
and seller revenue.
I. Introduction
Inmany auction settings, it seems likely that important information com-
monly known among bidders is unobserved by the econometrician. Ig-
noring such unobserved heterogeneity can lead to a variety of errors.
Onemay infer toomuch within-auction correlation in bidders’ private in-
formation, as well as too much cross-auction variation in this informa-
tion, leading to incorrect conclusions about such issues as bidder market
power, the division of surplus, and optimal auction design.1 In a first-price
auction, unobserved heterogeneity presents a particular challenge be-
cause standard identification approaches exploit the insight that bid-
ders’ equilibrium beliefs about the competition can be inferred from
observed distributions of bids;2 with unobserved auction-level heteroge-
neity, bidders’ beliefs condition on information unavailable to the econo-
metrician. A further problem is that auction-level unobservables are likely
to affect not only bids but also bidder participation. Such endogenous bid-
der entry threatens several identification and testing approaches relying
on exogenous variation in the level of competition.3

Here we propose an empirical approach for first-price sealed-bid auc-
tions with affiliated values, unobserved heterogeneity, and endogenous
bidder entry. We show nonparametric identification of key structural fea-
tures and propose a semiparametric estimation approach. We apply the
approach to auctions of offshore oil and gas leases in the US Outer Con-
tinental Shelf (OCS) in order to evaluate important features of these
auctions, including the presence of common values.
Although the term “common values” (or “interdependent values”) is

often associatedwith auctions, it refers to a classic formof adverse selection
that can arise in a broad range of environments where some parties to a
potential transaction have private information relevant to others’ assess-
ments of their own valuations or costs (e.g., Akerlof 1970; Arrow 1970; Vin-
cent 1989; Maskin and Tirole 1992; Deneckere and Liang 2006). Testing
ee, e.g., Athey, Levin, and Seira (2011), Krasnokutskaya (2011), Krasnokutskaya and
(2011), and Roberts (2013).
ee, e.g., Laffont and Vuong (1993), Guerre, Perrigne, and Vuong (2000), Li,
gne, and Vuong (2002), Hendricks, Pinkse, and Porter (2003), and Athey and Haile
, 2007).
ee, e.g., Gilley and Karels (1981), Athey and Haile (2002), Haile, Hong, and Shum
), Guerre, Perrigne, and Vuong (2009), Gillen (2010), and Campo et al. (2011).
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hypotheses about the nature of private information necessarily relies on
an indirect approach, and auctions often offer settings in which the main-
tained assumptions relied upon can be tightly linked to actual market
institutions.
But while an auction of drilling rights is frequently cited as an example

of a common values environment, formal testing for common values has
been hindered by the confounding effects of unobserved heterogeneity.
Indeed, we reject private values in favor of common values only when ac-
counting for unobserved heterogeneity and endogenous bidder entry.
More broadly, we find that affiliated private information, common values,
and common-knowledge unobservables—three distinct phenomena with
different implications for policy and empirical work4—are all present in
OCS auctions. We also use our results to quantify Milgrom and Weber’s
(1982) classic revenue ranking of first- and second-price sealed-bid auc-
tions and to examine the interaction between affiliation, the winner’s curse,
and the number of bidders in determining the aggressiveness of bidding
and seller revenue.
Prior work on testing for common values in auctions includes Paarsch

(1992), Athey andHaile (2002), Bajari andHortaçsu (2003),Haile,Hong,
and Shum (2003), Hortaçsu and Kastl (2012), and Hill and Shneyerov
(2014). Most of this work, like ours, exploits the fact that in a common
values auction the winner’s curse becomes more severe as the number
of competitors grows (all else equal). Our testing approach is most similar
to that of Haile, Hong, and Shum (2003), discussed further below, who
studied timber auctions. Our generalizations of their model relax their
most restrictive assumptions but make identification substantially more
challenging and require a different estimation approach.
Our empirical study of OCS auctions is related to that of Hendricks,

Pinkse, and Porter (2003), who focused on testable implications of a pure
common values model.5 Our work is complementary to theirs. We allow
the pure common values model but do not assume it, and we neither ex-
ploit nor rely on estimates of realized tract values. Hendricks, Pinkse, and
Porter (2003) point out that testing for common values would be difficult
4 For example, affiliation leads to the “linkage principle” (Milgrom and Weber 1982;
Milgrom 1987), whereas common values leads to the “winner’s curse,” each with potentially
important implications for auction design. Unobserved heterogeneity, which is held fixed in
auction theory, implies neither affiliation nor common values but creates challenges for
identification.

5 Earlier work on OCS auctions includes Gilley and Karels (1981), Hendricks, Porter,
and Boudreau (1987), Hendricks and Porter (1988), and Hendricks, Porter, and Spady
(1989), as well as that of Li, Perrigne, and Vuong (2000), who called for formal testing
for common values.
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because of the likely correlation between bidder entry and auction-level
unobservables. Our study also complements Haile, Hendricks, and Por-
ter (2010) and the simultaneous work of Aradillas-López et al. (2019),
which focus on implications of competitive (vs. collusive) bidding in OCS
auctions after the introduction of “area-wide leasing” in 1983. Here we
consider only the period 1954–83, where the evidence in Haile, Hen-
dricks, and Porter (2010) supports the assumption of competitive bid-
ding, and we focus on methodological and substantive issues driven by
the nature of bidders’ information—both shared and private.
Haile and Kitamura (2019) review existing econometric approaches to

first-price auctions with unobserved heterogeneity. All require compro-
mises of some form. Several (e.g., Krasnokutskaya 2011; Hu, McAdams,
and Shum 2013; D’Haultfoeuille and Février 2015) require that bidders
have independent types, enabling all correlation among bids to be attrib-
uted to unobserved heterogeneity.6 Krasnokutskaya and Seim (2011) and
Gentry and Li (2014) have extended these methods to models with en-
dogenous entry. Other approaches to unobserved heterogeneity use a
control-function strategy requiring a one-to-one mapping between the
unobserved heterogeneity and an observed auxiliary outcome (often,
the number of bidders), allowing one to indirectly condition on the un-
observable (e.g., Campo, Perrigne, and Vuong 2003; Haile, Hong, and
Shum 2003; Guerre, Perrigne, and Vuong 2009; Roberts 2013). Simulta-
neous work by Kitamura and Laage (2018) proposes a finite mixture ap-
proach allowing affiliated types but requiring that the unobservable be
discrete (cf. Haile, Hong, and Shum 2003 and Hu, McAdams, and Shum
2013) and enter through a separable structure similar to that in Krasno-
kutskaya (2011). Finally, while control-function approaches can provide a
strategy for isolating exogenous variation in bidder entry, others generally
do not.
Our approach requires compromises as well. We rely on an index as-

sumption similar to that in Krasnokutskaya (2011) and Kitamura and
Laage (2018). Like Haile, Hong, and Shum (2003), we require an instru-
ment for entry and a reduced form for the entry outcome in which the
auction unobservable is the only latent factor. This rules out stochastic
bidder participation, including models of selective entry. Our use of a re-
duced form also implies that additional structure would be needed to
evaluate interventions that would alter the map from auction character-
istics to entry outcomes.
6 See also the partial-identification results in Armstrong (2013). An exception among
approaches building on the measurement error literature is Balat (2017). His extension
of Hu, McAdams, and Shum (2013) exploits observation of potential bidders’ entry deci-
sions at two sequential stages.
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But our approach also offers advantages. It avoids the requirement of
independent bidder types and provides a strategy for exploiting exoge-
nous sources of variation in bidder entry. This combination of features
is particularly important in our application. Common values settings gen-
erally demand that we allow correlated types (signals), and our test for
common values relies on exogenous variation in entry arising through
an instrument. We also avoid requiring a bijection (conditional on covar-
iates) between entry and the unobservable (cf. Campo, Perrigne, and
Vuong 2003, Haile, Hong, and Shum 2003, and Guerre, Perrigne, and
Vuong 2009)—a requirement that can be difficult to rationalize and that
limits the support of the unobservable. In contrast, we show that our em-
pirical model can be derived from a two-stage game motivated by our ap-
plication—an entry stage à la Berry (1992), in which bidders choose
whether to acquire a signal of the good’s value, followed by competitive
bidding à la Milgrom andWeber (1982). In this example, the underlying
unobserved heterogeneity may have arbitrary dimension and unrestricted
support, may be correlated with observables, may exhibit spatial depen-
dence, and may affect sample selection.
The next section presents our model. In Section III, we address non-

parametric identification. Section IV describes our proposed estimation
method. We then narrow our focus to the OCS auctions, with model es-
timates discussed in section V. We present the tests for common values in
section VI, then explore revenue implications of our estimates in sec-
tion VII. Our conclusion, in section VIII, includes a discussion of several
caveats, extensions, and directions for future work.
II. Model
We consider a standard model of a first-price sealed-bid auctions with
symmetric affiliated values, extended to allow for auction-level heteroge-
neity and endogenous bidder entry. Auction t is associated with observed
characteristics Xt ∈ X and a scalar unobservable Ut. Without further loss,
we let Ut be uniformly distributed on [0, 1]. We also assume indepen-
dence between Xt and Ut.
Assumption 1. Xt ⫫Ut .
The restriction to a scalar unobservable independent of Xt is less re-

strictive than it may appear. We show below that this representation can
be derived—without loss of generality for most purposes motivating esti-
mation of an auction model—from a model in which auction-level un-
observables have arbitrary dimension and arbitrary dependence with Xt.
In that model, the weak monotonicity conditions required below are also
obtained as results rather than assumptions.
For each auction t, we postulate a two-stage process in which entry is fol-

lowed by bidding. We do not specify a particular model of entry; rather,
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we posit a reduced form for the entry outcome and assume Bayes-Nash
equilibrium in the auction stage. The number of bidders entering auc-
tion t is denoted by Nt. Bidders are assumed risk neutral. Bidder i’s valu-
ation for the good offered is denoted by Vit. Upon entering, i observes a
private signal of Vit, denoted by Sit ∈ ½s,�s�. Let Vt 5 ðV1t , ::: , VNttÞ, St 5
ðS1t , ::: , SNt tÞ, and S2it 5 StnSit .
The bidding stage follows Milgrom and Weber (1982). The realiza-

tions of ðNt , Xt ,UtÞ are common knowledge among bidders, as is the dis-
tribution of ðSt , VtÞjðNt , Xt ,UtÞ.7 In addition, each bidder i knows the sig-
nal Sit. Let FSV ðSt , Vt jNt , Xt ,UtÞ denote the joint distribution of signals and
valuations conditional on ðNt , Xt ,UtÞ. Wemake the following standard as-
sumptions on this conditional distribution.
Assumption 2. Given any ðn, x, uÞ ∈ suppðNt , Xt ,UtÞ, (i) the joint dis-

tribution FSV ðSt , Vt jn, x, uÞ is affiliated and exchangeable in the indices i 5
1, ::: , n, with suppVit 5 ½vðx, uÞ, �vðx, uÞ�; (ii) St has a continuously differ-
entiable joint density that is positive on ðs,�sÞn; and (iii) the joint distribution
function E ½Vit jSit , S2it ,Nt 5 n, Xt 5x,Ut 5 u� is strictly increasing in Sit.
Because the bidding stage involves a standard affiliated-valuesmodel, it

nests a variety of special cases. With private values, E ½Vit jSit , S2it ,Nt , Xt ,Ut �
does not depend on S2it. In our setting this is equivalent to bidders’
knowledge of their valuations, that is, Sit 5 Vit . When E ½Vit jSit , S2it ,Nt ,
Xt , Ut � depends on S2it, wehave common values (or interdependent values). A spe-
cial case of the common values model is that of pure common values, where
Vit 5 �Vt for all i.
A conditional expectation of particular relevance for what follows is

wðsit ; nt , xt , utÞ ; E Vit jSit 5 max
j≠i

Sjt 5 sit ,Nt 5 nt , Xt 5 xt , Ut 5 ut

� �
:

This is a bidder’s expected value of winning the auction conditional on
all common-knowledge information, the observed private signal, and the
event (typically counterfactual) that this signal ties for highest among
7 Although standard, the assumption that bidders know the number of competitors is sig-
nificant and may be inappropriate in some applications. Hendricks, Pinkse, and Porter
(2003) point out that in OCS auctions, rivals’ joint bidding agreements and participation
in follow-up seismic surveys were typically known and that bidders performing a follow-
up survey submitted bids on roughly 80% of the tracts analyzed. In our data, we reject
the hypothesis that bidders are unaware of the realized nt in favor of bidding that is more
aggressive (given Xt, Ut) for larger nt. In addition, two composite tests of our maintained as-
sumptions (discussed below) fail to reject. Nonetheless, these institutional features and em-
pirical findings leave the possibility that bidders in our application have some uncertainty
about the realization ofNt. A general challenge in accommodating such uncertainty in first-
price auctions is the need to specify precisely the information bidders do have (see, e.g.,
Hendricks, Pinkse, and Porter 2003 and Gentry and Li 2014). Simulations indicate that
the bias of our test for common values could go either way if our assumption is violated.
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those received by all bidders at the auction. This expectation plays an im-
portant role in the theory because, when equilibrium bidding strategies
turn out to be strictly increasing in signals, tying for the highest signal
means that small deviations from one’s equilibrium bid will change the
identity of the winner. We therefore refer to wðsit ; nt , xt , utÞ as bidder i ’s
“pivotal expected value” at auction t. Pivotal expected values also play a
central role in our strategy for discriminating between private values and
common values.
We impose the following restriction on how the auction characteristics

(Xt, Ut) affect bidder valuations.
Assumption 3. (i) Vit 5 GðXt ,UtÞV 0

it ; (ii) given Nt 5 n, (V 0
1t , ::: , V

0
nt ,

S1t , ::: , Snt) are independent of (Xt, Ut); and (iii) GðXt , UtÞ is strictly posi-
tive for all (Xt, Ut), bounded, and weakly increasing in Ut.
Assumption 3 is an index restriction requiring multiplicative separa-

bility in (Xt, Ut) and weak monotonicity in Ut.8 An assumption of multi-
plicative (or additive) separability has often been relied upon in the auctions
literature, including for identification in other settings with unobserved
heterogeneity. Our results rely on this assumption as well.9 Without fur-
ther loss, we normalize the scale of G relative to that of V 0

it by taking an
arbitrary point x0 ∈ X and setting

G x0, 0ð Þ 5 1: (1)

We assume initially that the auction is conducted without a binding re-
serve price, although we also consider an important extension for our
application allowing a random reserve price. Under assumption 2, the
auction stage of our model admits a unique Bayesian Nash equilibrium in
weakly increasing strategies; these strategies, denoted by bð�; Xt ,Ut ,NtÞ :
½s,�s�→R, are symmetric and strictly increasing.10 Let the random variable
Bit 5 bðSit ; Xt ,Ut ,NtÞ denote the equilibrium bid of bidder i in auction t.
A useful fact is that the separability required by assumption 3 is inher-

ited by the equilibrium bidding strategies.11 Thus, under assumptions 2
and 3 we may write
8 Without a distributional restriction like that in part ii of the assumption, part i would
have no content. And because more “desirable” realizations of the unobservable state can
be labeled with larger values, the monotonicity restriction in part iii rules out only variation
with Xt in the partial order on the unobservable implied by desirability (see also example 1
and app. A).

9 For what follows it is sufficient that the conditional expectations E ½Vit jSt , Xt ,Ut ,Nt � take
the multiplicatively separable form. This weaker condition will be more natural when these
ex ante conditional expectations are positive even though Vit may take negative values.

10 See theorem 2.1 in Athey and Haile (2007) and the associated references. Milgrom
and Weber (1982) characterize the equilibrium strategies.

11 See, e.g., Haile, Hong, and Shum (2003), Athey and Haile (2007), or Krasnokutskaya
(2011).
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b Sit ; Xt ,Ut ,Ntð Þ 5 G Xt ,Utð Þb0 Sit ;Ntð Þ, (2)

where b0 denotes the symmetric BayesianNash equilibrium bidding strat-
egy for a standardized Nt-bidder auction at which GðXt ,UtÞ 5 Gðx0, 0Þ 5
1. Following Haile, Hong, and Shum (2003), we refer to B0

it 5 b0ðSit ;NtÞ
and V 0

it as “homogenized” bids and valuations, respectively.
We link the model of a single auction to the observed sample through

assumption 4. Given assumption 3, this is the standard assumption that
auctions are i.i.d. (independently and identically distributed) conditional
on the auction characteristics, ðNt , Xt ,UtÞ. However, we do not require the
latent characteristics Ut to be independent across auctions.
Assumption 4. ðV 0

t , StÞ ⫫ ðV t 0
0, St 0 Þ for t 0 ≠ t.

Finally, we specify the outcome of the entry stage by supposing that the
number of bidders at auction t satisfies

Nt 5 h Xt , Zt ,Utð Þ (3)

for some function h that is weakly increasing inUt. Formally, equation (3) is
an assumed reduced form for the entry outcome. The weak monotonicity
requirement links the interpretation of the unobservable in the entry and
bidding stages: unobservables that make the good for sale more valuable
also encourage more entry. The new variable Zt in equation (3) is an exog-
enous auction-specific observable that affects bidder entry but is otherwise
excludable from the auction model, as formalized in assumption 5.
Assumption 5. (i) Zt ⫫ Ut jXt ; and (ii) Zt ⫫ ðSt , V 0

t ÞjNt .
The following example, discussed more fully in appendix A, describes

one fully specified two-stage game leading to the structure assumed above.
Example 1. Consider a model of entry and bidding for an OCS oil

and gas lease, where a standard simultaneous-move entry stage à la Berry
(1992) precedes a competitive bidding stage à la Milgrom and Weber
(1982). Players in the game are firms in the industry. The tract offered
for lease is associated with observables Xt, which include (among other
relevant covariates) the number of active leases on adjacent (“neighbor”)
tracts and the sets of bidders for those leases. The active neighbor leases
are owned by Zt distinct neighbor firms. Tract-level unobservables are de-
noted by Et, which may have arbitrary dimension, may be correlated with
Xt, and may be spatially correlated. The characteristics Xt and Et scale val-
uations (multiplicatively) through a bounded index lðXt , EtÞ. Firms play
a two-stage game. They first choose simultaneously whether to enter,
with each entering firm i incurring a signal acquisition cost ci(Xt). These
costs are common knowledge and lower for neighbor firms than for
nonneighbor firms.12 Entrants learn their private signals and the number
12 This structure generalizes that in Hendricks and Porter (1988), where neighbors ob-
tain a private signal for free but nonneighbors face an infinite cost of signal acquisition.
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of entrants, then participate in a first-price sealed-bid auctionwith symmet-
ric affiliated values. Appendix A shows that all pure-strategy perfect Bayes-
ian equilibria with weakly increasing strategies in the bidding stage can be
represented by the model and assumptions above. This representation is
obtained by defining Ut 5 Flðlðxt , EtÞjxtÞ, where Flð�jxÞ is the cumulative
distribution function (CDF) of the random variable lðx, EtÞ. Observe that
the distribution of Ut does not vary with Xt, although its interpretation
does.13
III. Nonparametric Identification
Here we develop sufficient conditions for identification of the entrymodel,
the index function G, and key features of the bidding model. Throughout,
we assume that the observables include all bids as well as Xt, Zt, Nt.14 Let Y
denote the support of (Xt, Zt); let YðnÞ denote that conditional onNt 5 n.
Let n ≥ 0 denote theminimum value in the support ofNt, with �n denoting
the maximum. Recalling equation (1), for convenience we take x0 such
that for some z we have ðx0, zÞ ∈ YðnÞ.
A. Identification of the Entry Model
We show identification of the entry model under the following regularity
condition.
Assumption 6. For all ðx, zÞ ∈ Y, there exist nðx, zÞ and �nðx, zÞ such

that hðx, z, UtÞ has support ðnðx, zÞ, nðx, zÞ 1 1, ::: , �nðx, zÞÞ.
Given assumption 6, for any ðx, zÞ ∈ Y, the function hðx, z, ⋅Þ is charac-

terized by thresholds tnðx,zÞ21ðx, zÞ ≤ tnðx,zÞðx, zÞ ≤ ::: ≤ t�nðx,zÞ, where

tn x,zð Þ21 x, zð Þ ; 0 and t�n x,zð Þ x, zð Þ ; 1, (4)

and for n 5 fnðx, zÞ, ::: , �nðx, zÞg, tn21ðx, zÞ 5 inffu ∈ ½0, 1� : hðx, z, uÞ ≥
ng. With this observation, identification of h follows easily.
Theorem 1. Under assumptions 1–6, h is identified.
Proof. For each (x, z), nðx, zÞ and �nðx, zÞ equal minfNt jXt 5 x, Zt 5 zg

and maxfNt jXt 5 x, Zt 5 zg, respectively. For n 5 nðx, zÞ, ::: , �nðx, zÞ,
tnðx, zÞ 5 PrðNt ≤ njXt 5 x, Zt 5 zÞ. With (4), this implies the result.
QED
13 In that case, knowledge of the function G will not be sufficient to characterize the ef-
fects of a ceteris paribus change in Xt on bidder valuations. See the additional discussion in
app. A.

14 In some applications, including ours, data may be available only for auctions attract-
ing at least one bidder. In app. C (apps. C–K are available online), we show that, within the
fully specified model of example 1, our maintained assumptions and analysis remain valid
in the presence of such sample selection.
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Identification of h determines the effects of Zt on bidder entry and pro-
vides bounds tnt21ðxt , ztÞ and tnt

ðxt , ztÞ on the realization of each unobserv-
able Ut. As shown in the following corollary (proved in app. B), it also de-
termines the distribution of Ut conditional on (Xt, Nt).
Corollary 1. Under assumptions 1–6, the distribution of Ut jðXt ,NtÞ

is identified.
B. Identification of the Index Function
Let gðx, uÞ 5 ln Gðx, uÞ. We first provide conditions sufficient to identify
g(x, u) at each x ∈ X and u ∈ Ux , where

Ux 5 [
z : x, zð Þ ∈ Y

n ∈ supp h x, z,Utð Þ

tn21ðx, zÞ, tnðx, zÞf g:

We then give additional conditions guaranteeing thatUx 5 ½0, 1� for each
x. We begin with the following result, whose proof illustrates a key strategy.
Lemma 1. Under assumptions 1–6, for all n ≥ n, all ðx, zÞ ∈ YðnÞ,

and all ðx 0, z 0Þ ∈ YðnÞ, the differences gðx 0, tnðx 0, z 0ÞÞ 2 gðx, tnðx, zÞÞ and
gðx 0, tn21ðx 0, z 0ÞÞ 2 gðx, tn21ðx, zÞÞ are identified.
Proof. By equation (2) and monotonicity of the equilibrium bid

function,

inf ln Bit jNt 5 n, Xt 5 x, Zt 5 zf g 5 g x, tn21 x, zð Þð Þ 1 ln b0 s; nð Þ:
So under assumptions 1–6, for any n and all (x, z) and (x 0, z 0) in YðnÞ, the
differences gðx 0, tn21ðx 0, z 0ÞÞ 2 gðx, tn21ðx, zÞÞ are identified.15 Similarly,
since

sup ln Bit jNt 5 n, Xt 5 x, Zt 5 zf g 5 g x, tn x, zð Þð Þ 1 ln b0 �s; nð Þ,
we obtain identification of the differences gðx 0, tnðx 0, z 0ÞÞ 2 gðx, tnðx, zÞÞ
for all n and all (x, z) and (x 0, z 0) in YðnÞ. QED
Thus far we have not imposed any requirement on the support of Zt or

its effect on entry outcomes. We do so below in order to obtain point
identification of g. However, even in the case that no instrument is avail-
able, theorem 1, corollary 1, and lemma 1 still hold. And once g is known,
Zt plays no further role in our identification results. Thus, while we rely on
an instrument to obtain point identification, this reliance is formally lim-
ited to ensuring that we canmove from the partial identification of g pro-
vided by lemma 1 to point identification of g.
As a step toward point identification, we introduce two additional as-

sumptions. These allow us to show that the first differences obtained above
15 Both b0ðs; nÞ and b0ð�s; nÞ are finite under assumption 2.
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can be differenced again, canceling common terms, to obtain a set of first
differences sufficient to pin down the value of the index g(x, u) at all x
and u ∈ Ux .
Assumption 7. For all n ∈ fn1 1, n 1 2, ::: , �ng, Yðn2 1Þ \ YðnÞ is

nonempty.
Assumption 8. There exists n* such that

i. 8 n ∈ fn, ::: , n*g, Y contains points (x(n), z(n)) and ðxðnÞ, ẑðnÞÞ
such that nðxðnÞ, zðnÞÞ 5 n and nðxðnÞ, ẑðnÞÞ 5 n 1 1; and

ii. 8 n ∈ fn*, ::: , �ng, Y contains points (x 0(n), z 0(n)) and ðx 0ðnÞ, ẑ0ðnÞÞ)
such that �nðx 0ðnÞ, z 0ðnÞÞ 5 n and �nðx 0ðnÞ, ẑ 0ðnÞÞ 5 n 2 1.
Assumption 7 requires variation in Ut that produces local variation in
entry. For example, this rules out trivial cases in which Ut has no effect on
Nt. Assumption 8 requires variation in the instrument Zt that can induce
local variation in the support of the entry outcomes at some values of Xt.
We prove the following lemma in appendix B.
Lemma 2. Under assumptions 1–8, for all n ≥ n and all ðx, zÞ ∈ YðnÞ,

the values of gðx, tn21ðx, zÞÞ and gðx, tnðx, zÞÞ are identified.
By theorem1, the values of tn21ðx, zÞ and tn(x, z) are known for all n and

ðx, zÞ ∈ YðnÞ. Thus, lemma 2 demonstrates identification of g(x, u) at
each x ∈ X and u ∈ Ux . In general, this may still deliver only partial iden-
tification of the index function g, so that in practice onemay rely on para-
metric structure to interpolate between the points fx ∈ X, u ∈ Uxg at
which g(x, u) is nonparametrically point identified. However, the fol-
lowing conditions are sufficient to ensure that no such interpolation is
necessary.
Assumption 9.

i. For all x ∈ X, suppZt jXt 5 x is connected.
ii. For all ðx, z, uÞ ∈ Y � ð0, 1Þ and all d > 0 such that ðu 2 d, u 1 dÞ ⊂

ð0, 1Þ, there exists e > 0 such that if k z0 2 z k < e then hðx, z0, u0Þ 5
hðx, z, uÞ for some u0 ∈ ðu 2 d, u 1 dÞ.
Assumption 10. For every x ∈ X there exists a finite partition 0 5
t0ðxÞ < t1ðxÞ < ::: < tK ðxÞðxÞ 5 1 of the unit interval such that for each
k 5 1, ::: , K ðxÞ and some zðkÞ, z0ðkÞ ∈ suppZt jXt 5 x, hðx, zðkÞ, tk21ðxÞÞ >
hðx, z0ðkÞ, tkðxÞÞ.
Assumption 9 requires continuously distributed Zt and a type of con-

tinuous substitution between Zt and Ut in the “production” of bidder en-
try: it must be possible to offset the effect (on entry) of a small change in
Zt with a small change in Ut. Assumption 10 requires that variation in Zt

have sufficient effect on participation to offset some discrete variation in
the unobservable Ut. A sufficient condition is that for each x there exist z
and z0 such that hðx, z, tn21ðx, zÞÞ > hðx, z0, tnðx, zÞÞ for all n ∈ fnðx, zÞ, ::: ,
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�nðx, zÞg; in this case, the set ftnðx,zÞ21, ::: , t�nðx,zÞg could define the partition
t0ðxÞ < t1ðxÞ < ::: < tK ðxÞ.
The following lemma, whose proof is provided in appendix B, leads

us to the point identification of g (and therefore G) demonstrated in
theorem 2.
Lemma 3. Under assumptions 1–9, tn21ðXt , ZtÞ is continuous in Zt on

the preimage of (0, 1).
Theorem 2. Under assumptions 1–10, G is identified on X � ½0, 1�.
Proof. We need only show that Ux 5 ½0, 1� for each x ∈ X. For arbitrary

x ∈ X, let 0 5 t0ðxÞ < t1ðxÞ < ::: < tK ðxÞðxÞ 5 1 be as in assumption 10.
Takeanyk ∈ f1, 2, ::: , K ðxÞg, and let z 5 zðkÞ and z0 5 z0ðkÞbeas inassump-
tion 10. Let n 5 hðx, z, tk21ðxÞÞ. Because hðx, z, tk21ðxÞÞ > hðx, z0, tkðxÞÞ,
we have hðx, z0, tkðxÞÞ < n and, therefore, tn21ðx, zÞ ≤ tk21ðxÞ < tkðxÞ ≤
tn21ðx, z0Þ. Because the continuous image of a connected set is connected,
lemma 3 and assumption 9 (part i) then imply that for every ~t ∈ ½tk21ðxÞ,
tkðxÞ� there exists z~t such that tn21ðx, z~tÞ 5 ~t. QED
C. Identification of the Bidding Model
Wenow demonstrate identification of the joint distribution of the pivotal
expected values wðS1t ; n, x, uÞ, ::: , wðSnt ; n, x, uÞ for all x ∈ X, u ∈ ½0, 1�,
and n in the support of Nt jfXt 5 x,Ut 5 ug. For a private-values model
this is equivalent to identification of the joint distribution of bidder val-
uations conditional on ðXt ,Nt ,UtÞ. Thus, theorem 3 below demonstrates
identification of the affiliated private-values model. Without the restric-
tion to private values, our result here provides an important form of par-
tial identification.16 For our empirical application, for example, this is suf-
ficient to allow us to test the hypothesis of equilibrium bidding in the
affiliated-values model, to test the hypothesis of private values against the
alternative of common values, to examine the potential gains from changes
in the auction format, and to assess the effects of competition on bidder
market power.17

Let GM jBðmjb, x, u, nÞ 5 Prðmaxj≠i Bjt ≤ mjBit 5 b, Xt 5 x,Ut 5 u,Nt 5
nÞ, and let gM jBðmjb, x, u, nÞ denote the associated conditional density
(guaranteed to exist by assumption 2 and strict monotonicity of the equi-
librium bid function). Following Laffont and Vuong (1993), Guerre, Per-
rigne, and Vuong (2000), and Li, Perrigne, and Vuong (2000, 2002), one
can characterize the relationship between each realized wðsit ; nt , xt , utÞ
and the associated equilibrium bid bit 5 bðsit ; xt , ut , ntÞ in terms of the
16 Without additional information or structure, common values models are not identi-
fied from bidding data. See, e.g., Laffont and Vuong (1993) and Athey and Haile (2002).

17 Tang (2011) shows how the joint distribution of pivotal expected values can be used to
bound counterfactual revenues in standard auctions with binding reserve prices.
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joint distribution of equilibrium bids. In particular, each bit must satisfy
the first-order condition (see, e.g., Athey and Haile 2007)

wðsit ; nt , xt , utÞ 5 bit 1
GM jB bit jbit , xt , ut , ntð Þ
gM jB bit jbit , xt , ut , ntð Þ : (5)

Although (5) expresses the pivotal expected value wðsit ; nt , xt , utÞ as a
functional of a conditional distribution of bids, the presence of ut on
the right-hand side creates challenges. Because realizations of Ut are not
observable or identified, one cannot directly condition on them to iden-
tify the functions GM jB and gM jB . This precludes obtaining identification
directly from equation (5). With the preceding results, however, we can
overcome this problem.
Observe that, like valuations and bids, the pivotal expected values

wðsit ; nt , xt , utÞ will have the separable structure

wðsit ; nt , xt , utÞ 5 w0ðsit ; ntÞGðxt , utÞ, (6)

wherew0ðsit ; ntÞ ; E ½V 0
it jSit 5 maxj≠iSjt 5 sit ,Nt 5 nt �.We refer tow0ðsit ; ntÞ

as bidder i’s “homogenized pivotal expected value” at auction t. The first-
order condition (5) can then be written as

w0ðsit ; ntÞ 5 b0it 1
GM 0jB0ðb0it jb0it , ntÞ
gM 0jB0ðb0it jb0it , ntÞ , (7)

whereGM 0jB0ðmjb, ntÞ5 Prðmaxj≠i B0
jt ≤ mjB0

it 5 b,Nt 5 nÞ and gM 0jB0ðmjb, ntÞ
is the associated conditional density.
Let ~Bit 5 lnðBitÞ and ~B0

it 5 lnðB0
itÞ. By assumption 3,

~Bit 5 ~B0
it 1 g Xt ,Utð Þ, (8)

with ~B0
it and gðXt ,UtÞ independent conditional on (Nt,Xt). Lemma4 (proved

in app. B) shows that theorem 2 and a standard deconvolution argument
yield identification of the joint distribution of ðB0

1t , ::: , B
0
ntÞ for all n.

Lemma 4. Under assumptions 1–10, conditional on any Nt 5 n, the
joint density of ðB0

1t , ::: , B
0
ntÞ is identified.

This leads directly to our main identification result.
Theorem 3. Let assumptions 1–10 hold. Then for all x ∈ X, u ∈ ½0, 1�,

and n ≥ 2 in the support of Nt jfXt 5 xg, the joint distribution of
ðwðS1t ; n, x, uÞ, ::: , wðSnt ; n, x, uÞÞ is identified.
Proof. Fix n. From equation (7), we have w0ðSit ; nÞ 5 yðB0

it ; nÞ ; B0
it 1

GM 0jB0ðB0
it jB0

it , nÞ=gM 0jB0ðB0
it jB0

it , nÞ. By lemma 4, the joint distribution
ðyðB0

1t ; nÞ, ::: , yðB0
nt ; nÞÞ is known. This implies identification of the joint

distribution of ðw0ðS1t ; nÞ, ::: , w0ðSnt ; nÞÞ. The result then follows immedi-
ately from equation (6) and theorem 2. QED
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IV. Estimation
Wepropose a two-stage semiparametric estimation strategy. The first stage
involves semiparametric sievequasi-maximumlikelihoodestimation(QMLE)
of the entry thresholds t‘(x, z), the index function g, and the joint distri-
butions of homogenized equilibrium bids. In the second stage, for each
level of bidder entry, we estimate the joint distribution of homogenized
pivotal expected values by plugging draws from the estimated distribution
of homogenized bids into the auction first-order condition and construct-
ing the empirical distribution of the resulting pseudosample.
A. Stage 1: Sieve-QMLE
Let vt denote the parameters of the entry model, vg the parameters of the
index function g, and vB the parameters of the joint distributions of log
homogenized bids. Let L1tðnt ; vtÞ 5 PrðNt 5 nt jXt 5 xt , Zt 5 zt ; vtÞ de-
note the (conditional on (xt, zt)) likelihood for the entry outcome in auc-
tion t. Let L2tðbt jnt ; vg, vB , vtÞ denote the likelihood of the observed bids
at auction t, conditional on the entry outcome nt (and on (xt, zt)). Defin-
ing v 5 ðvt, vg, vBÞ, the conditional quasi-likelihood18 function for the ob-
served outcomes fðnt , btÞgT

t51 can be written

LðvÞ 5
Y
t

L1tðnt ; vtÞL2tðbt jnt ; vg, vB , vtÞ:

We give details of our empirical specification and the two components
of the quasi likelihood in sections IV.A.1 and IV.A.2 below. Estimates of
the parameter vector v can be obtained by maximizing LðvÞ. Because vt
is identified from the entry outcomes alone, it is also possible to split
the QMLE stage, first maximizing

Q
tL1tðnt ; vtÞ to estimate vt, then maxi-

mizing
Q

tL2tðbt jnt ; vg, vB , vtÞ conditional on v̂t. In our data, the two ap-
proaches yield very similar estimates. However, because we found the
two-step QMLE procedure to be more numerically stable in bootstrap
samples, below we report results using the two-step version.
Consistency can be confirmed by adapting the results of White and

Wooldridge (1991) for sieve-extremum estimators with weakly dependent
time-series data to the case of weak spatial dependence.19 To conduct in-
ference, we use a nonparametric block bootstrap procedure that captures
both dependence among bids within an auction and spatial dependence
between the unobservables Ut across auctions. Specifically, we resample
18 Recall that we permit spatial dependence.
19 In particular, we can represent tract locations by points in Z2. Then, under a standard

“expanding-domain” asymptotics, White and Wooldridge’s uniform-consistency result for
stationary a-mixing time-series data (corollary 2.6) can be extended using a Bernstein-type
inequality for a-mixing random fields on Z2 (e.g., Yao 2003).
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auctions with replacement, taking all bids from the selected auction and
including in the bootstrap sample all auctions on neighbor tracts as well.
Following Hendricks, Pinkse, and Porter (2003), we resample weighting
auctions by factors inversely proportional to the number of auctions in
the neighborhood of the tract.20
1. Entry Thresholds
Our entry model above reduces to an ordered-response model where,
given Xt 5 x and Zt 5 z, we have Nt 5 n if and only if Ut ∈ ðtn21ðx, zÞ,
tnðx, zÞÞ. Equivalently, given any strictly increasing univariate CDF H, we
have

Nt 5 njXt 5 x, Zt 5 zf g ⇔ At ∈ an21 x, zð Þ, an x, zð Þð Þf g,
where At ∼ H and anðx, zÞ 5 H21ðtnðx, zÞÞ. We specify a linear threshold
functionanðx, zÞ 5 an 2 x 0ax 2 z 0az and specifyH as the standard normal
CDF, yielding an ordered-probit model. Letting vt 5 ðfang�n21

n5n, ax , azÞ, we
have L1tðn; vtÞ 5 H ðanðxt , zt ; vtÞÞ 2 H ðan21ðxt , zt ; vtÞÞ.
2. Index Function and Homogenized-Bid
Distribution
Given our focus on testing for common values, we prioritize flexibility
in how the joint distribution and density of bids can vary with n when
specifying the second part of the quasi likelihood. We specify the index
function g parametrically as gðXt ,Ut ; vgÞ; we use a linear specification be-
low. For each value of n, the joint density of log homogenized bids is
specified semiparametrically, using a parametric copula and a nonpara-
metric (Bernstein polynomial sieve) specification of the common mar-
ginal distribution.21

We specify the marginal density of a generic bidder’s log homoge-
nized bid in an n-bidder auction as
20 Similar results are obtained without weighting. Applying the results of van der Vaart
and Wellner (1996) and Lahiri (2003), one can verify validity of the bootstrap when we in-
terpret our finite-sample estimator as that for a parametric model. General conditions for
consistency of bootstrap inference procedures for sieve M-estimators in the i.i.d. setting
can be found, e.g., in Ma and Kosorok (2005) and Chen and Pouzo (2009). See also Chen
and Liao (2014), and Chen, Liao, and Sun (2014) in the case of time-series data.

21 See, e.g., Chen, Fan, and Tsyrennikov (2006). Prior work using Bernstein polynomials
in estimation of auction models includes Komarova (2017) and Kong (2020, 2021). Hub-
bard, Li, and Paarsch (2012) previously combined a parametric copula and nonparametric
(kernel) specification of marginal densities to estimate auction models. The Gaussian copula
is computationally advantageous for our estimation approach. We discuss computation in
app. D.
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~gB0
i
ð~b0; vb , nÞ 5 o

m

j50

v
ð jÞ
b,n qj ,m F ~b0

� �� �
f ~b0
� �

, (9)

where F(⋅) and f(⋅) denote the standard normal distribution and density
functions, respectively, and qj ,mðnÞ 5 ðmj Þn jð1 2 nÞm2j . Here m is a param-
eter, growing with the sample size, that determines the order of the Bern-
stein polynomial approximation. Let vb,n 5 fvð jÞb,ngm

j50. Thus, the parameter
vector vb in equation (9) represents fvb,ng�n

n5n.
Because Bernstein polynomials approximate functions with domain

[0, 1], in equation (9)weuseBernstein polynomials to approximate themar-
ginal density of the transformed variable Fð~b0Þ.22 This transformation also
helps ensure that the nonparametric estimator will offer sensible approx-
imations even in modest sample sizes. With m 5 0, for example, the dis-
tribution of log bids would be normal. Thus, the nonparametric compo-
nent of our specification is based on a sequence of approximatingmodels
that starts with a natural (lognormal) parametric specification and adds
flexibility as permitted by the sample size.
Let ~GB0

i
ð~b0; vb , nÞ denote the CDF associated with ~gB0

i
ð~b0; vb , nÞ, and let

x(⋅; rn) denote the symmetric Gaussian copula density with covariance
parameter rn. The joint density ~gB 0ð~b01 , ::: , ~b0n; vb,n, rn, nÞ of log homoge-
nized bids in n-bidder auctions is then given by

xð~GB0
i
ð~b01 ; vb,n, nÞ, ::: , ~GB0

i
ð~b0n; vb,n, nÞ; rnÞ~gB0

i
ð~b01 ; vb,n, nÞ ::: ~gB0

i
ð~b0n; vb,n, nÞ: (10)

Letting r 5 frng�n
n5n and vB 5 ðvb , rÞ, we have

L2tðbt jnt ; vBÞ5
ðtnt ðxt ,zt ;vtÞ

tnt21ðxt ,zt ;vtÞ

~gb0ð~b1t 2 gðxt , u; vgÞ, ::: , ~bnt t 2 gðxt , u; vgÞ; vb,nt
, rnt

, ntÞ
tnt
ðxt , zt ; vtÞ 2 tnt21ðxt , zt ; vtÞ du,

(11)

where tnt21ðxt , zt ; vtÞ and tnt
ðxt , zt ; vtÞ denote the bounds on ut implied by

the entry-model parameters vt.23 We approximate the integral by Monte
Carlo simulation.
22 We use the normalization gð0, 0Þ 5 0 (recall eq. [1]). In estimation, however, we add
intercepts g0

nt
for each value of nt to the index function gðxt , ut ; vgÞ, implying that in this

step the joint densities estimated are those of centered log homogenized bids ~b0t 2 g0
nt
.

We then adjust the location of each estimated density by the associated intercept estimate
to obtain our estimated density of (uncentered) log homogenized bids. This procedure
offers practical advantages by centering log homogenized bids at zero before transforma-
tion by the normal CDF, ensuring that the location of the estimated bid distribution can
move freely with nt and freeing the Bernstein coefficients to capture features of the mar-
ginal density other than its location.

23 When nt 5 1, one may set L2tðbt jnt ; vBÞ 5 1 by convention, since our baseline model of
competitive bidding does not imply an interpretation of the quantity ~bit 2 gðxt , utÞ in that
case. Alternatively, because we specify different parameters vb,n for each value of n, eq. (11)
gives a correct expression for L2tðbt jnt ; vBÞ for nt 5 1 whenever bids in one-bidder auctions
are assumed to inherit the separable structure required of valuations. Below, we develop an
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B. Stage 2: Invert Equilibrium First-Order Conditions
Given the first-stage estimates of the index function g and joint distribu-
tion of homogenized bids, estimation of the relevant auction primitives
is straightforward and does not involve further use of the data. We use
the equilibrium first-order condition (7), which can be written in terms
of the distribution of log homogenized bids as

w0ðsit ; ntÞ 5 exp ~b0it
� �

1 1
~GM jBð~b0it j~b0it , ntÞ
~gM jBð~b0it j~b0it , ntÞ

� �
, (12)

where ~GM jBð~b0it j~b0it , ntÞ and ~gM jBð~b0it j~b0it , ntÞ are, respectively, the CDF and the
probability density function of maxj≠i ~B0

jt conditional on ~B0
it 5 ~b0it .

For each value of Nt 5 n, we transform the estimated joint distribu-
tions and densities obtained from stage 1 to construct the conditional dis-
tributions and densities appearing in equation (12) (see app. D). Then
we draw log homogenized bids from their estimated marginal distribu-
tions and plug these into equation (12), yielding pseudosamples of the
vectors ðw0ðs1t ; nÞ, ::: , w0ðsnt ; nÞÞ for many simulated auctions t. The em-
pirical distribution of these pseudodraws provides a consistent estimate
of the joint distribution of homogenized pivotal expected values for n-
bidder auction. Although these joint distributions will suffice for our ap-
plication, the pseudodraws can also be scaled by the estimated value of
the index G(x, u) in order to estimate the joint distributions of (non-
homogenized) pivotal expected values, given Xt 5 x and Ut 5 u. In a
private-values setting, for example, this would yield an estimate of the
joint distribution of bidder valuations.
V. OCS Auctions

A. Background and Data
We examine first-price sealed-bid auctions of oil and gas leases in the
OCS held between 1954 and 1983. Extensive discussion of the OCS auc-
tions can be found in, for example, Gilley and Karels (1981), Hendricks
and Porter (1988), Hendricks, Porter, and Spady (1989), and Hendricks,
Pinkse, and Porter (2003). For a more complete institutional back-
ground we refer readers to that work, upon which we rely heavily our-
selves. Briefly, however, auctions were held for the right to lease a spec-
ified tract for exploration and production of oil, gas, and other minerals.
The seller in these auctions was an agency of the US Department of the
important extension for our application, incorporating a random reserve price, where this
separability is an implication of equilibrium behavior. Therefore, given the large number
of one-bidder auctions in our sample, we include these in the QMLE, using eq. (11) for all
specifications.
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Interior known as the Mineral Management Service (MMS). Tracts typi-
cally covered a rectangular “block” of 5,000–5,760 acres in the Gulf of
Mexico.24 Production on a tract was subject to royalty payments by the
leaseholder at a prespecified rate, usually one-sixth. Bids at an auction
were offers of an additional up-front “bonus” payment for the right to be-
come the leaseholder.
No exploratory drilling was permitted before the auction, although in

some cases exploration and production would already have occurred on
neighbor tracts and would be publicly observable. Bids would also reflect
information obtained through evaluation of data frommagnetic, gravity,
and seismic surveys. Although initial collection of survey data was often
funded jointly, firms relied on their own experts for modeling and anal-
ysis of the data and often performed follow-up surveys of the tracts on
which they intended to bid. Differences in expert assessments of the sur-
vey data are likely an important source of heterogeneity in bidder beliefs
about the value of a given tract (Hendricks, Pinkse, and Porter 2003).
These features lead us to treat bidder entry as a decision to acquire a costly
signal about the value of the tract (recall example 1).
We have data on all auctions attracting at least one bidder (recall

n. 14). Table 1 shows the number of auctions in our sample by number
of bidders. We do not separate wildcat, development, and drainage tracts;
instead, we account directly for the presence of active neighbor leases
and neighbor production, and we allow asymmetry between neighbor
and nonneighbor costs of signal acquisition in a way that generalizes the
structure considered in Hendricks and Porter (1988; see example 1).25

Like Aradillas-López et al. (2019), we model bidders as symmetric condi-
tional on acquisition of a signal. Thus, while bidders may decide not to ac-
quire a signal through analysis of the seismic data andmay reach different
conclusions from such analysis, the technology producing signals is mod-
eled as symmetric across firms. Formal tests, developed in appendix E, fail
to reject symmetry.
TABLE 1
Sample Sizes

1 2 3 4 5 6 7 8 9 10 11–17

Tn 814 498 293 229 172 127 100 73 56 56 128
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The MMS sometimes announced a small minimum acceptable bid of
$10–$25 per acre; the MMS also retained the option to reject all bids
when it deemed the auction to be noncompetitive. Such rejections were
rare in our sample, except at auctions attracting only one bid (see app.H).
We initially treat both the announced minimum bid and the MMS bid re-
jection policy as nonbinding, as in Li, Perrigne, and Vuong (2000). We
also estimate a variation of themodel in which theMMS bid rejection pol-
icy is modeled with a random secret reserve price.
Limited forms of joint bidding were permitted in these auctions. Fol-

lowing the literature, we model each bid as coming from a generic “bid-
der,”whichmight be solo firmor a bidding consortium.26 Typically, a tract
will have eight neighbors, only some (or none) of which would be “active”
(under lease) when the tract is offered. Our measure of the number of
neighbor firms (distinct owners of adjacent leases) accounts for the pres-
ence of joint bidding by linking firms that have bid together previously in
the same neighborhood, following criteria developed by Aradillas-López
et al. (2019).
Our tract characteristics Xt, all measured as of the time of the auction,

include the number of active neighbor leases, whether the tract is isolated
(no active neighbors), the number of firms that bid for neighbor leases,
whether the tract was offered previously (attracting no bidders or being
relinquished by a prior leaseholder), whether a lease has expired on a
neighbor tract, the number of neighbor tracts previously drilled, the num-
ber of “hits” on neighbor tracts, average water depth (and its square), and
the royalty rate associated with the lease. We present a summary of these
auction characteristics in table 2. Below we also incorporate year fixed
effects.27

Following example 1, our instrument for bidder entry is the number
of neighbor firms (also in table 2).28 This variable is likely to affect bidder
entry because ownership of a neighbor tract is likely to reduce the cost
of assessing the value of the current tract. As discussed in appendix A,
when we condition on the number of neighbor tracts and the set of firms
that previously bid for those tracts, variation in the number of neigh-
bor firms is determined entirely by the realizations of bidder signals at
prior auctions, and therefore independent of Ut under our maintained
assumptions.
26 Hendricks and Porter (1992) and Hendricks, Porter, and Tan (2008) examine empir-
ical and theoretical aspects of joint bidding in these auctions.

27 Although we control for time effects and a number of “neighborhood”-level observ-
ables, an interesting direction for future work would involve modeling bidders’ dynamic
learning about the underlying spatial distribution of oil deposits. See, e.g., Covert (2015)
and Hodgson (2019).

28 Because this instrument has limited discrete support, our theoretical results suggest
that we may rely on functional form to fill in the gaps between the points at which the in-
dex function G is nonparametrically identified.
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B. Baseline Model Estimates
Here we report estimates of the entry model, index function, and joint
distribution of equilibrium bids, using our baseline empirical specifica-
tion with Bernstein polynomial approximation of order m 5 4.29 In gen-
eral, we estimate separate joint distributions for each value of nt. However,
for large values of nt we observe relatively few auctions (recall table 1),
leading us to assume that all auctions with nt ≥ 11 share the samemarginal
distribution of homogenized bids and the same copula correlation param-
eter. Combined with the ordered-probit specification of the entry model,
this leads to a baseline specification with 151 parameters.
1. Entry Model
Table 3 shows our estimated entry-model parameters, with standard er-
rors obtained from the spatial block bootstrap (we use 800 bootstrap rep-
lications throughout). As discussed in example 1 (see also app. A), the
function h characterizes the effect of Zt on entry but will not generally
reveal the effects of Xt. Thus, one must interpret the estimated coeffi-
cients on Xt with caution. However, the coefficient on Zt is positive (con-
sistent with the prediction of our motivating example) and statistically
significant, supporting its value in providing a source of variation in bid-
der entry.
2. Index Function and Bid Distribution
Table 3 also reports our estimated index parameters gx and gu. We
again caution that coefficients on Xt need not have the usual causal
TABLE 2
Summary Statistics

Variable Mean Median Standard Deviation

No. of active neighbor leases 1.48 .00 1.96
Isolated-lease indicator .59 1.00 .49
No. of firms that bid for neighbors 2.37 .00 3.56
Reoffered-tract indicator .20 .00 .40
Neighbor-expired indicator .31 .00 .46
No. of neighbor tracts drilled 1.69 1.00 2.25
No. of neighbor hits .65 .00 1.30
Water depth (000 feet) .20 .14 .28
Royalty rate (%) 16.10 16.00 1.35
No. of neighbor firms .89 .00 1.27
29 Our choice of m reflects our experien
cision using similar sample sizes in Monte
slightly larger or smaller values of m, althou
add parameters.
ce with the tr
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interpretations. However, the estimates indicate a strong effect of the un-
observed heterogeneity on bids. Because Ut is normalized to be uniformly
distributed, the coefficient implies that a 1–standard deviation increase in
Ut drives up bids (and valuations) by roughly 33%.
We do not report estimates of the Bernstein polynomial parameters

here. However, table 4 shows our estimates of the Gaussian copula corre-
lation parameters rn. The point estimates are positive, consistent with
our assumption of positive dependence between bidders’ private infor-
mation. Wald tests fail to reject the hypothesis of equal copula correla-
tion for all values of n,30 but strongly reject the null that all rn are zero.
Because homogenized bids are strictly increasing functions of signals,
this implies rejection of the hypothesis of independent bidder types.
This finding is of some importance on its own. Common-knowledge un-
observables and correlated private information are two distinct phenom-
ena with different implications for behavior and policy. Often, only one
of these has been permitted in applications. Also important, however, is
that the estimated correlation is generally small, suggesting modest cor-
relation of bidders’ private information.
TABLE 3
Entry-Model and Index-Function Estimates

Entry model Index function

Estimate
Standard
Error Estimate

Standard
Error

X:
No. of active leases 2.089 .033 .016 .021
1{# neighbor firms 5 0} .518 .100 .042 .087
No. of firms that bid for
neighbors .016 .012 .029 .011

Reoffered-tract indicator 2.201 .075 2.167 .067
Neighbor-expired indicator 2.044 .079 2.280 .067
No. of neighbor tracts drilled
(first ring) 2.046 .030 .049 .024

No. of neighbor hits (first ring) .076 .027 2.022 .025
Depth 2.558 .283 2.224 .269
Depth squared .120 .132 .092 .118
Royalty rate 2.002 .022 2.006 .017
Time controls Sale year dummies Sale year dummies

Z: no. of neighbor firms .1743 .0446
U: unobserved heterogeneity 1.1363 .351
30 While not statistically distinguish
rameter for the nine-bidder auctions
no clear explanation for this. We do n
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C. Decomposition of Correlation and Variance
Bids in the same auction may be correlated because of correlated private
information, auction observables, and auction unobservables. We pre-
sent a decomposition of these factors in table 5, which also shows a de-
composition of the overall variance of bids.31 Figures in column 1, labeled
“log B 0

it ,” are for the homogenized log bids. Here the pairwise correlation
reflects the correlation among signals, the nonlinearity of the bidding
strategy (and log transformation), and the fact that, all else equal, bid lev-
els vary with the number of competitors in the auction. Similarly, the var-
iance in this column reflects the variability in bidders’ assessments of tract
values as well as variation in bidding strategies across auctions with differ-
ent numbers of entrants.
A natural way to characterize the contributions of unobservables is

with the correlation/variance arising from variation in g(x, Ut) at a rep-
resentative value of x. With our linear specification of g, this variation is
identical for all x. In column 2 of table 5, labeled “log B0

it 1 guUt ,” we add
the contribution of auction-level unobservables. After accounting for the
contributions of the log homogenized bids and unobservable Ut, all re-
maining correlation/variance in the log bids reflects auction observ-
ables. Again exploiting our linear specification of g, column 3, labeled
“log B0

it 1 guUt 1 X 0
t gx ,” adds only the variation due to auction-level covar-

iates. Thefinal column, labeled “log Bit ,” adds the contribution of the year
fixed effects.32 Given our wide time span, it is not surprising that the fixed
effects account for a substantial portion of the correlation and variance.
More interesting is a comparison of the contributions of the auction-level
covariates and the auction-level unobservables. The estimated contribu-
tion of the unobservables is roughly six times as large as that of the ob-
served covariates. This is particularly noteworthy because we selected co-
variates Xt from an unusually rich set of observables in part on the basis
TABLE 4
Copula Correlation Estimates

n 5

2 3 4 5 6 7 8 9 10 11–18

Estimate .044 .031 .089 .136 .112 .111 .133 .295 .161 .109
Standard error .050 .040 .032 .041 .037 .043 .040 .067 .068 .020
31 We measure t
coefficient.
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of explanatory power in descriptive analysis of bids. Unobserved heteroge-
neity could be even more important in applications where only a limited
set of covariates is available.
VI. Tests for Common Values

A. Testing Approach
We use our estimates to test the null hypothesis of private values against
the alternative of common values. We exploit the observation that, all
else equal, adding competitors to a common values auction increases
the severity of the winner’s curse.33 The winner’s curse reflects “bad news”
about a bidder’s valuation implied when his competitors’ signals are not
sufficiently favorable for any of them to outbid him; the larger the num-
ber of such unfavorable signals, the worse the news. This effect is intuitive
and can distinguish common values from private values, where there is no
winner’s curse. Of course, this requires variation in the number of bid-
ders that is not associated with changes in the underlying valuations or
information structure that would mimic or reverse the effect on the win-
ner’s curse. In our case, the following is a sufficient condition.
Assumption 11. For known n ≥ 2, �n > n, and all n 5 n, ::: , n 2 1,

FSV 0ðS1t , ::: , Snt , V 0
1t , ::: ,V

0
nt jNt 5nÞ5FSV 0ðS1t , ::: , Snt , V 0

1t , ::: ,V
0
nt jNt 5n1 1Þ.

This is an assumption that, over a known range of auction sizes,Ut is the
only latent source of dependence between the number of bidders and
the valuations/signals.34 Given this condition, Haile, Hong, and Shum
(2003) showed that homogenizedpivotal expected valuesw0(Sit; n) are un-
affected by n in a private-values auction but decreasing in n in a common-
values auction (see also Athey and Haile 2002).
TABLE 5
Decomposition of Log Bid Correlation and Variance

log B0
it

(1)
log B0

it 1 guUt

(2)
log B0

it 1 guUt 1 X 0
t gx

(3)
log Bit

(4)

Within-auction pairwise
correlation .133 .210 .222 .425

Variance 1.520 1.669 1.693 2.292
33 We use the term “winne
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34 This condition is strong
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To construct the tests, we use our estimates of the marginal distribu-
tions Fw(⋅; n) of homogenized pivotal expected values conditional on
Nt 5 n. We test the null hypothesis of equality (private values),

H0 : Fwðw; nÞ 5 Fwðw; n 1 1Þ 8 w, n 5 2, ::: , 6,

against the one-sided alternative of first-order stochastic dominance
(common values),

H1 : Fwðw; nÞ ≤ Fwðw; n 1 1Þ 8 w, n 5 2, ::: , 6,

with the inequality strict for at least some n and w. We limit attention to
auctions with at most seven bidders in part to ensure that we have a sam-
ple of at least 100 auctions for each value of n considered.35 An additional
reason, however, is that growth in the severity of the winner’s curse with
the level of competition tends to diminish quickly as n grows. Intuitively,
once a bidder assumes that n 2 1 others have low signals, learning that
one additional signal is low conveys little “bad news” unless n is small.
Thus, with common values, pivotal expected values are decreasing and,
typically, convex in n.36 This intuitive feature leads us to expect any evi-
dence for common values to be clearest when comparing distributions
at the lowest values n to those at higher levels of n.
We compare pairs of distributions using the one-sided Cramér-Von

Mises-type statistic

CVM 5

ð∞

2∞
F̂wðw;N1Þ 2 F̂wðw;N2Þ
� 	2

1dw, (13)

where ½y�1 5 y � 1fy > 0g and F̂wðw;NÞ is the estimated distribution of
w 0(Sit; Nt) conditional on Nt lying in a range of values defined by a set
N. We focus primarily on sets N containing two adjacent values of n
(“coarse binning”). This pooling is done to reduce the impact of sam-
pling error. However, by combining n 5 2 and n 5 3, where we expect
the largest change in the severity of the winner’s curse, this pooling may
hide the strongest evidence of common values. Thus, we also consider
singleton sets (“fine binning”). In addition to pairwise tests, we construct
a single test statistic for the full range n 5 2, ::: , 7, based on the maxi-
mum (or smoothed maximum) over the pairwise statistics. Below, we re-
port results for the pairwise and “max” tests for coarse binning as well as
the max test for fine binning.37
35 Abusing notation slightly, we let n (without an index) represent the number of bid-
ders in a nonspecific auction rather than referring repeatedly to “the number of bidders.”

36 This convexity holds in all examples of symmetric common values auctions we are
aware of. An interesting question is whether additional assumptions are needed to prove
this as a general property.

37 Appendix F provides complete results for fine binning. As expected, the strongest ev-
idence for common values (a p-value of .001) comes from comparisons of n 5 2 to n 5 3.
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Haile, Hong, and Shum (2003) also observe that the union of the null
and alternative hypotheses requires w 0(Sit; n) to be weakly decreasing in
n. Because violation of this requirement would indicate rejection of at
least one of our maintained hypotheses, this allows a specification test.38

We implement this using the same type of test statistics, just reversing the
direction of the one-sided alternative to the hypothesis of equal Fw(⋅; n)
across n (the least favorable relation under the null hypothesis of correct
specification).
B. Results: Baseline Specification
In figure 1A, we show the estimated CDFs under coarse binning, where we
compare “low”(n ∈ f2, 3g), “medium” (n ∈ f4, 5g), and “high” (n ∈ f6, 7g)
levels of competition. Under the null, these distributions should differ
only as a result of sampling error, whereas the alternative of common
values implies that the CDFs will shift “northwest” as n increases. The es-
timated distributions shown here exhibit the stochastic ordering implied
by the common values model. Further, as expected, the gap between the
distributions for low and medium n is substantially larger than that be-
tween the distributions for medium and high n. Table 6 shows the relative
sizes of these shifts (focusing on percentage changes) for the median
homogenized pivotal expected values in each of the three bins.39 As we
shift fromauctions withn ∈ f2, 3g to those with n ∈ f4, 5g, themedian piv-
otal expected value falls by about 14%. When moving from n ∈ f4, 5g to
n ∈ f6, 7g, the median falls by just under 3%.
Contrast the patterns in figure 1A with those in figure 1B, which shows

the estimated distributions obtained when we estimate the model with-
out allowing for unobserved heterogeneity. Here the results suggest sto-
chastic ordering in the direction opposite that predicted by common val-
ues. This suggests a misspecified model.
Table 7 shows the p -values obtained from the formal tests. These re-

sults confirm what is suggested by the figures. First consider the com-
parison between low n and medium n when we allow unobserved het-
erogeneity (“With UH”). The test for common values implies rejection
of private values in favor of common values, with a p -value of .021. The
smaller gap between the estimated CDFs for medium and high n ob-
served in figure 1 cannot be statistically distinguished. However, the max
38 Another testable implicationof themaintainedhypotheses is that the inversehomogenized-
bid functions—i.e., the right-hand sideof thefirst-order conditions (12)—are strictly increas-
ing as functions of the log homogenized bid (see Guerre, Perrigne, and Vuong 2000). We
find no violation of this requirement, even before allowing for sampling error (see fig. 2
below.)

39 Percentage changes in homogenized and nonhomogenized pivotal expected values
are identical.



FIG. 1.—Test for common values, baseline specification: estimated cumulative distribu-
tions of homogenized pivotal expected values.
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tests—for both coarse and fine binning—also imply rejection at signifi-
cance levels around 2%. Consistent with figure 1, the specification test
yields no evidence suggesting misspecification in the model with unob-
served heterogeneity.
When we consider the model without unobserved heterogeneity (“No

UH”), the conclusions are essentially reversed. Not only is there no evi-
dence of common values, but the specification tests suggest misspecifi-
cation, with all three coarse-binning tests yielding p-values below .10. This
is intuitive but not a necessary implication of ignoring unobserved hetero-
geneity. When we ignore unobserved heterogeneity and endogenous en-
try, an “endogenous-treatment” bias works against the winner’s curse effect
we are seeking to detect: auctions with more bidders may have a larger
winner’s curse, but they also have more favorable unobservables. This sug-
gests that the true effects of n on pivotal expected values could be masked
or even reversed. But this intuition is incomplete. Themodel is misspecified
when unobserved heterogeneity is present but ignored in the first-order
conditions used to interpret the data. The cumulative distributions re-
covered in that case are not those of bidders’ pivotal expected values. More-
over, the direction of the misspecification bias is unclear, and this bias may
TABLE 7
Test p-Values: Baseline Specification

With UH No UH

Test for Common Values

{2,3} versus {4,5} .021 .299
{4,5} versus {6,7} .274 .754
Maximum (coarse binning) .022 .590
Maximum (fine binning) .019 .541

Specification Test

{2,3} versus {4,5} .906 .066
{4,5} versus {6,7} .901 .076
Maximum (coarse binning) .985 .081
Maximum (fine binning) .922 .239
Note.—UH 5 unobserved heterogeneity.
TABLE 6
Competition and Median Pivotal Expected Values

n ∈ {2, 3} n ∈ {4, 5} n ∈ {6, 7}

Median homogenized pivotal expected value 1,067,371 915,437 890,112
Change ($) 151,933 25,326
Change (%) 14.2 2.8
Note.—Median homogenized pivotal expected values are in 1982 dollars.
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vary with n. Nonetheless, the results indicate that ignoring unobserved
heterogeneity obscures the presence of common values in our sample.
C. Results under Alternative Specifications
We have explored the same testing strategies under several alternative
specifications. In particular, we have examined:

1. an extension of the bidding model allowing for a random reserve
price, representing the MMS’s option to reject all bids;

2. replacement of the ordered-probit specification of the entry model
with a semi-nonparametric estimator, following Gallant andNychka
(1987);

3. dropping the year fixed effects from the index g(xt, ut), forcing un-
measured time-varying factors affecting the auctions into the un-
observable; and

4. dropping all drainage tracts from the sample.

Detailed discussion and results are presented in appendix G. These al-
ternative specifications lead to very similar patterns in the estimated dis-
tributions of pivotal expected values and to the same broad conclusions
from the formal tests.
VII. Affiliation, Common Values, and Seller Revenue
The presence of affiliation and common values can have important impli-
cations for auction design and for the way competition affects outcomes.
Our estimates allow us to quantify some of these implications in the con-
text of the OCS auctions.
A. Competition, Market Power, and Revenue
A well-known but counterintuitive feature of common-value auctions is
that added bidder competition can lead to less aggressive equilibrium
bidding and even to reduced seller revenue.40 The winner’s curse is a
key force behind this possibility, although Pinkse and Tan (2005) dem-
onstrated that bids can decline with n as a result of affiliation of signals
alone. Here we use our estimates to examine the equilibrium effects of
bidder competition on bid shading, the level of bids, and seller revenue.
In figure 2 we plot, for different values of n, bidders’ homogenized piv-

otal expected values against the associated homogenized bids implied by
the first-order condition (7). Recall that pivotal expected values are strictly
40 See, e.g., Laffont (1997) and Hong and Shum (2002).
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increasing in bidder types (signals). We know from theory that all types
above the lowest shade their bids below their pivotal expected values
and that the degree of bid shading is increasing in type. Here we see that
the estimated magnitude of this bid shading (reflecting bidders’ market
power) is substantial—all curves lie well below the 457 line. However, the
gap shrinks as the level of competition rises from n 5 2 to n 5 7.
In figure 3, we plot the estimated homogenized equilibrium bidding

strategies, normalizing bidder signals to lie on [0, 1]. The estimated bid
functions are strictly increasing, as implied by the model (but not im-
posed). They also generally increase with n—that is, the effect of more in-
tense competition generally dominates the accompanying implications
for the winner’s curse and strategic responses to affiliation. Using our
same one-sided testing strategy, we reject (with a 10% significance thresh-
old) the null hypothesis of bid functions that are constant with respect to
n in favor of strategies that increase with n. Our point estimates suggest
that this monotonicity reverses at n 5 7. Such a reversal is consistent with
the folk wisdom that equilibrium bids “eventually” decrease with n in a
FIG. 2.—Competition and bid shading. Estimated pivotal expected values are on the
horizontal axis, with the associated homogenized equilibrium bids on the vertical axis,
both in 1982 dollars. A color version of this figure is available online.
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common values auction (see, e.g., Laffont 1997). However, even when
comparing n 5 6 to n 5 7 in isolation, formal tests fail to reject the null
that bids are weakly increasing with n at standard significance levels.
Finally, the second column (labeled “First-Price”) of table 8 shows, at

each value of n, the implications of our estimates for a seller’s expected
revenue. To put revenues in a natural scale, we use the median value of
the estimated index gðXt ,UtÞ in our sample. Notably, even though our
point estimates (fig. 3) suggested a nonmonotonicity of bidding with re-
spect to n, this effect is overcome by the fact that when n is larger the win-
ning bid is the maximum among a larger number of bids. Thus, even our
point estimates give no indication that a seller would profit from restrict-
ing entry to reduce the severity of the winner’s curse faced by bidders.
B. The Linkage Principle and Revenue Rankings
Milgrom and Weber (1982) and Milgrom (1987) identified the “linkage
principle” as a key force determining a seller’s preference among stan-
dard auction formats and information revelation policies in an affiliated-
values setting. Loosely, the linkage principle states that the information
FIG. 3.—Competition and equilibrium bidding strategies. Bidder signals (normalized to
[0, 1] are on the horizontal axis, with the associated homogenized equilibrium bids (in
1982 dollars) on the vertical axis. A color version of this figure is available online.
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rents obtained by bidders can be limited (and the surplus extracted by
the seller enhanced) by linking the price the winning bidder pays to re-
alizations of random variables that are outside the winner’s control but
affiliated with the winner’s private information. Moving from a first-price
sealed-bid auction to a second-price sealed-bid auction, for example, en-
hances expected revenue by letting the second-highest bid determine
the price: this bid is a function of the second-highest signal, which is af-
filiated with the winner’s signal.41 However, despite the central theoretical
role of the linkage principle and implied “revenue ranking” results, the
existing literature provides few opportunities to quantify this effect em-
pirically.42 We know of no such evaluation in the case of OCS auctions.
The third column of table 8 presents simulated expected revenues for

second-price sealed-bid auctions implied by our estimates.43 We report
results at each value of n from 2 to 7, as well as an overall average ob-
tained by mixing over the full range of Nt in our sample according to its
empirical distribution. Although the results exhibit the revenue ranking
implied by the theory, the estimated revenue gains from switching to a
second-price auction are modest, with overall gains of 3% (although still
around $450,000 per auction in 1982 dollars). This is consistent with our
finding that correlation among bidders’ private signals is relatively weak.
As with the theoretical analysis of Milgrom and Weber (1982) and

Milgrom (1987), an important caveat is that we have held bidder entry
behavior fixed in our simulation analysis. In reality, changes in auction
TABLE 8
Revenue Gains through the Linkage Principle

n

Expected Revenue

First-Price Second-Price Gain (%)
Standard

Error (%)

2 7.02 7.05 .48 1.58
3 9.21 9.31 1.06 2.05
4 11.48 11.79 2.73 1.64
5 14.95 15.64 4.62 1.19
6 16.91 17.51 3.57 1.41
7 16.94 17.43 2.89 1.44
Overall 15.17 15.62 3.04 .49
41 Similarly, the
of the tract, can be
hazard (see, e.g.,

42 Shneyerov (2
43 Equilibrium

pected value.
MMS’s use of royalties, which link the tota
justified by the linkage principle—at least

Riley 1988 and DeMarzo, Kremer, and Skr
006) has done so for a sample of munic
revenue in a second-price auction equals
l price paid to the re
in the absence of e
zypacz 2005).
ipal bond auctions.
the second-highes
Note.—Simulated expected revenues, in millions of 1982 dollars, based on 1 million
simulated auctions of each size n, scaled by the estimated median value of the index
g(Xt, Ut) in our sample. Bootstrap standard errors are based on 800 replications.
alized value
x post moral

t pivotal ex-
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design that reduce bidder surplus at a given level of competition should
discourage entry, working against the anticipated gains in revenue.Quan-
tifying the equilibrium effect would require estimation of a structural
model of bidder entry (see, e.g., the extension discussed in app. I). How-
ever, becausewefind that even the gains considered byMilgromandWeber
(1982) and Milgrom (1987) would be fairly small, our results are quite in-
formative. At least in the case of these auctions, any gains frommoving to
a second-price auction to better exploit the linkage principle appear to
be limited.
VIII. Conclusions, Caveats, and Extensions
We proposed an empirical approach to first-price sealed-bid auctions
with affiliated values, unobserved auction-level heterogeneity, and en-
dogenous bidder entry. Applying our method to OCS auction data led
us to reject the private-values model in favor common values, a conclu-
sion that is robust across a variety of specifications. We found that ignor-
ing unobserved heterogeneity can hide the presence of common values
and that models without unobserved heterogeneity can be rejected. De-
spite the presence of affiliated signals and common values, however, we
found that the seller would not gain from limiting competition to soften
the winner’s curse and that any revenue gain from moving to a second-
price sealed-bid auction to better exploit the linkage principle would
likely be small.
Although our empirical approach offers several advantages for our

study of OCS auctions, it relies on assumptions that will not be suitable
for all applications or questions.This is both an important caveat and a call
for further work. In appendix I, we discuss some initial extensions, chal-
lenges, and directions for further exploration. There we discuss (1) ob-
taining identification of a structural model of bidder entry, permitting
examination of additional counterfactual questions; (2) extending our
methods to some types of models permitting bidder asymmetry; (3) allow-
ing a binding public reserve price; (4) testing of additional overidentifying
restrictions; and (5) making use of data on realized quantities of oil pro-
duction. Even where we are able to offer some initial results on these top-
ics, our exploration is necessarily preliminary, leaving important open
questions for future work.
Finally, although we obtained a useful form of partial identification for

a common values model, the full set of primitives in common values mod-
els—even without unobserved heterogeneity—generally is not point iden-
tified without assumptions and data beyond those we required. Thus, it
will be important to continue pursuit of approaches to identification that
exploit the features of particular settings (see, e.g., Hendricks, Pinkse,
and Porter 2003 or Somaini 2020) and to explore extensions permitting
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unobserved heterogeneity in those frameworks. It may also prove produc-
tive to pursue other forms of partial identification that can be used to ad-
dress positive and normative questions. The recent work of Syrgkanis,
Tamer, and Ziani (2018) provides one such approach.
Appendix A

Equilibrium Entry in a Model of OCS Auctions

Here we expand on the sketch provided in example 1 to consider a particular
extensive-form game of entry and bidding that is motivated by our application
and yields an entry outcome satisfying the reduced-form equation (3) and our
assumed weak monotonicity conditions. This example also demonstrates how
our model can accommodate auction-specific unobservables that are of arbitrary
dimension and correlated with auction-specific observables, despite the appar-
ent contradiction to our assumption that Ut is a scalar and independent of Xt. Ac-
commodation of such correlation requires that we allow the interpretation of Ut

to vary with the vector Xt. This precludes identification of (causal) effects of co-
variates on the auction; but in typical auction applications, auction-level observ-
ables are primarily confounding factors to be controlled for rather than factors
whose effects are of direct interest. This section also motivates the instrument
used in our application.

A1. Model

Consider a game of entry and bidding for the lease of a tract t. Let I denote the
set of all potential bidders (“firms”), with Z t ⊂ I denoting the set of “neighbor
firms”—holders of active leases on adjacent (“neighbor”) tracts. Let I 5 jI j and
Zt 5 jZ t j. Let Vit denote the value of the lease to firm i (i ’s “valuation”). Let Xt

and Et denote, respectively, observed and unobserved (to us) characteristics of
lease t that affect bidders’ valuations. Let Xt include (among other relevant char-
acteristics) the number of active leases on neighbor tracts and the set of bidders
for each of those leases.44 We make no restriction on the dimension of Et and do
not require independence between Xt and Et.

The game consists of two stages. In the first stage, firms simultaneously choose
whether to incur an entry cost in order to acquire a signal and participate in the
auction. Let ci(xt) denote the entry cost for firm i. Neighbors have lower entry
costs. In particular, ciðxtÞ 5 cðxtÞ for a neighbor firm, whereas nonneighbor
firms have entry costs ciðxtÞ 5 cðxtÞ 1 dðxtÞ, with dðxtÞ > 0.45 Let Sit denote the sig-
nal received by firm i. Firms acquiring signals become “bidders” and learn the
number of competitors they face.
44 In practice, we represent the set of bidders for neighboring tracts more parsimoniously
with the number of such bidders.

45 More generally, one can allow entry costs to depend on the instruments, writing c(xt, zt)
and d(xt, zt). For example, in other applications one might have measures of signal acquisi-
tion costs that vary across time or location. However, our discussion of sample selection in
app. C exploits the exclusion of Zt from entry costs.



common values in oil lease auctions 3905
In the second stage, the lease is offered to bidders by first-price auction with no
binding reserve price.46 Let Nt denote the number of bidders. Given Nt 5 n, let
St 5 ðS1t , ::: , SntÞ and Vt 5 ðV1t , ::: , VntÞ, where without loss we relabel bidders as
firms i 5 1, ::: , n. For any conditioning set Q⊆ðXt , Zt , EtÞ, let FSV ðSt , Vt jNt , QÞ de-
note the conditional distribution of bidders’ signals and valuations. We assume
that FSV ðSt , Vt jNt , Xt , Zt , EtÞ satisfies standard smoothness, symmetry, affiliation,
and nondegeneracy conditions (see assumption 2 in sec. II).

We assume that Zt alters the joint distribution of signals and valuations only
through its effect on Nt—that is, that FSV ðSt , Vt jNt , Zt , Xt , EtÞ 5 FSV ðSt , Vt jNt , Xt , EtÞ
and that Zt is independent of Et conditional on Xt. We discuss the justification
for this conditional independence assumption below. We assume

Vit 5 V 0
it l Xt , Etð Þ, (A1)

where the function l is positive and the random variables ðV 0
1t , ::: , V

0
nt , S1t , SntÞ are

independent of ðXt , Et , ZtÞ conditional on Nt 5 n. We assume that, for all x ∈ X,
l(x, Et) has a continuous distribution and convex bounded support.

Note that we have not restricted the dimension of Et, imposed any monotonic-
ity condition on l, or required independence between Xt and Et.47 Nonetheless,
we can obtain the model of unobserved heterogeneity in the text by represent-
ing the random variable l(Xt, Et) in terms of its quantiles conditional on Xt. In
particular, given Xt 5 x, let Flð�jxÞ denote the CDF of the random variable
l(x, Et), and let

Ut 5 Fl lðx, EtÞjxð Þ: (A2)

For u ∈ ½0, 1�, define F 21
l ðujxÞ 5 inffl : FlðljxÞ ≥ ug, and let

G x, uð Þ 5 F 21
l ujxð Þ: (A3)

Combining equations (A2) and (A3), for each x we have FlðGðx, UtÞjxÞ 5 Ut 5
Flðlðx, EtÞjxÞ, that is, Gðx,UtÞ 5 lðx, EtÞ. By construction, G is strictly increasing
(and continuous) in its second argument, and Ut is uniform on [0, 1] conditional
on Xt. Because Ut is a measurable function of Et conditional on Xt, Ut is indepen-
dent of Zt, given Xt.

Note that in this new representation of the model, the distribution of Ut does
not vary with Xt, but its interpretation generally will. Because Gðxt , utÞ 5 lðxt , etÞ
for all t by construction, G(Xt, Ut) fully characterizes the variation and depen-
dence in valuations and bids that arises from the observables and unobservables.
Likewise, controlling for the value of G(Xt, Ut) fully controls for the effects of auc-
tion observables and unobservables (Xt, Et) on valuations, bids, and equilibrium
46 As is standard in the literature, we assume that only firms incurring the entry cost can
submit a bid (see, e.g., Levin and Smith 1994; Li and Zheng 2009; Athey, Levin, and Seira
2011; Krasnokutskaya and Seim 2011; Bhattacharya, Roberts, and Sweeting 2014; or Gentry
and Li 2014).

47 Accommodating dependence may be important, as the nomination process by which
tracts were offered for lease in our sample period suggests that a tract with an “undesirable”
value of Xt may have been unlikely to be offered unless the value of Et made the tract de-
sirable. See, e.g., Hendricks, Porter, and Boudreau (1987) for a discussion of the nomina-
tion process.
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first-order conditions. However, G does not characterize the effect of a change in
Xt holding unobservables fixed, since our Ut is redefined at every value of Xt.

A2. Equilibrium

We henceforth use the representation of the model just derived. The set of firms
I , the rules of the game, the values of ðXt ,Ut , ZtÞ, and the joint distribution
FSV ðSt , Vt jNt , Xt ,UtÞ are common knowledge among firms. We consider perfect
Bayesian equilibrium in pure strategies, with weakly increasing strategies in the
auction stage.

The second stage of the game is identical to the first-price sealed-bid auction
with symmetric affiliated values studied by Milgrom andWeber (1982), who char-
acterize the unique Bayesian Nash equilibrium in increasing bidding strategies.
Bidder i’s payoff in the auction stage can be written as a function of the commonly
known ðNt , Xt ,UtÞ and the realized bidder signals St. As noted in the text, multi-
plicative separability of valuations is inherited by equilibrium bids. This implies
that a bidder’s ex post profit, denoted by pðSit , S2it ,Nt , Xt ,UtÞ, is strictly increasing
in the index G(Xt, Ut) and, therefore, strictly increasing in Ut. Further, we assume
the usual case in which the ex ante expected equilibrium payoff �pðNt , Xt ,UtÞ ;
E ½pðSit , S2it ,Nt , Xt ,UtÞjNt , Xt ,Ut � is strictly decreasing in Nt.48

In the entry stage, firmsmake decisions based on the cost of entry and expected
profit from participating in the auction. LetCit 5 ciðXtÞ. For firm i, entering when
n 2 1 other firms will also enter implies expected profit �pðn, Xt ,UtÞ 2 Cit .

Conditional on ðXt , Zt ,UtÞ, and given equilibrium beliefs about payoffs in the
auction stage, the entry stage is then equivalent to the entry game in Berry (1992).
Berry showed that a pure-strategy equilibrium exists and that with probability 1 all
equilibria exhibit the same number of entrants, given by

h Xt , Zt ,Utð Þ 5 max
0≤n≤I

n : �p n, Xt ,Utð Þ 2 Cit ≥ 0f g:

Recall that (Xt, Zt) determine the values of fCitgi∈I . Thus, in any pure-strategy per-
fect Bayesian equilibrium (with weakly increasing bidding) we have

Nt 5 h Xt , Zt , Utð Þ:
Because �pðNt , Xt ,UtÞ is strictly increasing in Ut, h is weakly increasing in Ut.

A3. The Instrument

Our instrument for bidder entry Zt is the number of neighbor firms. First, con-
sider the exclusion requirement (assumption 5, in sec. II). We have assumed di-
rectly that Zt is independent of ðSt , V 0

t Þ conditional on Nt, that is, that Xt are the
only observables directly affecting bidder valuations.49 However, we must verify
48 We know of no counterexample to strict monotonicity in Nt under the assumption
that Ut is the only latent source of dependence between the entry and auction stages—
i.e., that assumption 11 holds. Nonmonotonicity (within the relevant range of Nt) could
lead to existence of multiple equilibria with different numbers of bidders.

49 This could fail here if the number of neighbor firms had a direct effect on tract value
(given Xt), e.g., by driving up costs of negotiating production from common pools.
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that Zt is also independent of Ut conditional on Xt. A tract with three neighbor
leases, for example, may have one, two, or three neighbor firms, depending on
which bidders for the neighboring leases won those auctions. Given the number
of neighbor leases and the bidders for each neighbor tract (i.e., conditional on
Xt), the number of distinct winners reflects only random variation in bidders’ sig-
nals at prior auctions. Recall that signals are assumed independent of tract-specific
unobserved heterogeneity and independent across tracts. Thus, even in the case of
spatially correlated tract-level unobservables Et, the conditional independence re-
quirement Zt ⫫Ut jXt will hold.

Regarding the “relevance” requirement for the instrument Zt,50 observe that
changes in the number of neighbor firms affects entry because, for some combi-
nations of ðXt , Zt ,UtÞ, the market will accommodate the ðn 1 1Þth entrant only
if there is a potential bidder with low signal acquisition cost. For example, we will
sometimes have two entrants because the market would support entry by a third
(low-cost) neighbor, but not by a third firm that is a (high-cost) nonneighbor.
Thus, larger values of Ztwill lead, all else equal, to weakly larger numbers of entrants.
Appendix B

Proofs Omitted from the Text

B1. Proof of Corollary 1

We can express PrðUt ≤ ujXt 5 x,Nt 5 nÞ as

FU jXN ujx, nð Þ 5
ð
FU jXZN ujx, z, nð Þ dz zjx, nð Þ, (B1)

where FU jXZN is the distribution of Ut jðXt , Zt ,NtÞ and z is the distribution of
Zt jðXt ,NtÞ. Conditional on Nt 5 n, Zt 5 z, and Xt 5 x, Ut is uniform on
½tn21ðx, zÞ, tnðx, zÞ�, and by theorem 1 the end points tn21ðx, zÞ and tnðx, zÞ are
identified. So FU jXZN is known. Since z is directly observed, the result follows from
equation (B1). QED

B2. Proof of Lemma 2

Step 1.—We first show that for all n ≥ n, all ðx, zÞ ∈ YðnÞ, and all ðx 0, z 0Þ ∈ YðnÞ,
gðx, tnðx, zÞÞ 2 gðx 0, tn21ðx 0, z0ÞÞ is identified. For n* as defined in assumption 8,
take n ≤ n*, and let x(n), z(n), and ẑðnÞ be as in part i of assumption 8, so that

n x nð Þ, z nð Þð Þ 5 n,

n x nð Þ, ẑ nð Þð Þ 5 n 1 1:
(B2)

Since ðxðnÞ, zðnÞÞ ∈ YðnÞ and ðxðnÞ, ẑðnÞÞ ∈ Yðn 1 1Þ, lemma 1 implies identifica-
tion of

g x 0, tn21 x 0, z0ð Þð Þ 2 g x nð Þ, tn21 x nð Þ, z nð Þð Þð Þ (B3)
50 We state formal “relevance” conditions for nonparametric identification in sec. III.
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and

g x 00, tn x 00, z00ð Þð Þ 2 g x nð Þ, tn x nð Þ, ẑ nð Þð Þð Þ (B4)

for all ðx 0, z 0Þ ∈ YðnÞ and ðx 00, z00Þ ∈ Yðn 1 1Þ. By equations (4) and (B2),

tn21 x nð Þ, z nð Þð Þ 5 0 5 tn x nð Þ, ẑ nð Þð Þ,
so subtracting (B3) from (B4) yields identification of

g x 00, tn x 00, z00ð Þð Þ 2 g x 0, tn21 x 0, z0ð Þð Þ (B5)

for all ðx 00, z00Þ ∈ Yðn 1 1Þ and ðx 0, z0Þ ∈ YðnÞ. By assumption 7, there exists some
(x00, z00) that is in both Yðn 1 1Þ and YðnÞ. The claim (for n ≤ n*) then follows
from lemma 1. A symmetric argument applies for n > n*.

Step 2.—To complete the proof, we proceed by induction, starting with n 5 n.
By the normalization (1) and our choice of x0, we have gðx0, 0Þ 5 0 and
ðx0, zÞ ∈ YðnÞ for some z. Lemma 1 then implies identification of gðx, tn21ðx, zÞÞ
for all ðx, zÞ ∈ YðnÞ. Step 1 above then implies identification of gðx, tnðx, zÞÞ for
all ðx, zÞ ∈ YðnÞ. Now take any n > n and suppose that gðx, tn21ðx, zÞÞ is known
for all ðx, zÞ ∈ Yðn 2 1Þ. By assumption 7 there exists a point (~x, ~z) in Yðn 2
1Þ \ YðnÞ. Since we have already identified gð~x, tn21ð~x,~zÞÞ, by lemma 1 we also
know the value of gðx, tn21ðx, zÞÞ for all (x, z) in YðnÞ. By step 1, this implies iden-
tification of gðx, tnðx, zÞÞ for all (x, z) in YðnÞ. QED

B3. Proof of Lemma 3

Take any n, x, and z such that tn21ðx, zÞ ∈ ð0, 1Þ. Let t 5 tn21ðx, zÞ, and let n > 0 be
sufficiently small that t 1 n < 1 and t 2 n > 0. We show that for any such n there
exists e > 0 such that for every z0 satisfying k z0 2 z k < e we have tn21ðx, z0Þ ∈
ðt 2 n, t 1 nÞ. Let d 5 n=2. By the definition of tn21ðx, zÞ and weak monotonicity
of h in Ut, hðx, z, t 2 dÞ < n. So by assumption 9 there exists e1 > 0 such that
for any z0 satisfying k z0 2 z k < e1, hðx, z0, t0Þ < n for some t0 ∈ ðt 2 2d, tÞ. Sim-
ilarly, because hðx, z, t 1 dÞ ≥ n, there exists e2 > 0 such that for any z 0 satisfy-
ing k z0 2 z k < e2, hðx, z0, t00Þ ≥ n for some t00 ∈ ðt, t 1 2dÞ. Letting e 5 minfe1, e2g,
we have shown that for any z0 satisfying k z 0 2 z k < e, hðx, z 0, t 0Þ < n for some
t0 ∈ ðt 2 n, tÞ, while hðx, z 0, t 00Þ ≥ n for some t 00 ∈ ðt, t 1 nÞ. Because tn21ðx, z 0Þ
must then lie in [t 0, t 00], the result follows. QED

B4. Proof of Lemma 4

Fix Nt 5 n and Xt 5 x. Let w~B denote the characteristic function of the log bids
ð~B1t , ::: , ~BntÞ conditional on Xt 5 x and Nt 5 n. By assumption 3, g(x, Ut) is
bounded. This implies that the characteristic function of g(x, Ut), denoted wg,
is nonzero almost everywhere.51 By equation (8), for ðr1, ::: , rnÞ ∈ Rn we have
w~Bðr1, ::: , rnÞ 5 w~B0ðr1, ::: , rnÞwgðr1 1 :::1 rnÞ, where w~B0 is the characteristic func-
tion of the log homogenized bids ð~B0

1t , ::: , ~B
0
ntÞ conditional on Nt 5 n. Since the
51 See, e.g., the proof of theorem 1 in Krasnokutskaya (2011).
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distribution of Ut jðXt ,NtÞ is known (corollary 1) and g is a known function (the-
orem 2), wg is known. So the equation

w~B0 r1, ::: , rnð Þ 5 w~B r1, ::: , rnð Þ
wg r1 1 ::: 1 rnð Þ

uniquely determines w~B0ðr1, ::: , rnÞ for almost all ðr1, ::: , rnÞ. By continuity of char-
acteristic functions this yields identification of w~B0 , implying identification of the
joint density of ð~B0

1t , ::: , ~B
0
ntÞ. The result then follows. QED
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